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1. INTRODUCTION 
 
      When composing a complicated survey network, these surveying data must be computed by 
least square method. As measurements always have errors, to minimize these errors, it must be 
measured with some precise survey instruments. The observation data must be processed by the 
least mean square method as well as it. 
      When the surveying data are computed by least square method, these errors describe standard 
deviation of coordinates. And these are computed by the equation s om m Q= . Where sm  is 

standard deviation of coordinates, om  is accuracy of measurements and Q  means sub matrices 
with diagonal components in the coefficient matrix on the normal equation.  
      This Q  matrix consist of observed sides. Therefore, Q  matrix can be calculated before 
observation, and optimize survey network. 
      This paper discuss the method of the design for survey network by Q  
 
 
2. PRINCIPLES OF LEAST SQUARES 
 
      In surveying, the measurements must often satisfy established numerical relationships known 
as geometric constraints. And that the number of normal equations in a parametric least square 
adjustment is always equal to the number of unknown variables. Often, the system of normal 
equations becomes quite large.  
      Matrix algebra provides at least two important advantages 

(1) It enables reducing complicated systems of equations to simple expressions that can 
be visualized and manipulated more easily. 

(2) It provides a systematic, mathematical method for solving problems that is well 
adapted to computers. 

Problems are frequently encountered in surveying and geodesy that require the solution of large 
systems of equations. 
 
 



2.1 Observing Equation 
 
      To make the matrix expression for performing least square adjustment, analogy will be made 
with the systematic procedures. The system of observation equations is presented by matrix 
notation. 
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2.2 Normal Equation 
 
Subjecting the matrices above to the manipulations given in the following expression, the normal 
equations are (2). 

=T TA AX A L                       (2) 
Equation (2) can also expressed as 

= TNX A L                        (3) 
It has been demonstrated that equations (2) and (3) produce the normal equations of a least 
squares adjustment. By using matrix algebra, the solution of normal equations like equation (2) is 

−= 1( )T TX A A A L           (4) 
 
2.3 Observation Equation for Distance 
 
      In adjusting trilateration surveys by parametric 
least squares, observation equations are written that 
relate the observed quantities and their inherent 
random errors to the most probable values for the x 
and y coordinates (the parameters) of the stations 
involved. Referring to fig.1, the following distance 
equation can be written for any line PiPj. 
                                                                                             Fig.1 Measurement of a distance 
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= − + −2 2( ) ( )ij j i j iS x x y y            (5) 

where ijS  is the ideal length of a line between monuments Pi and Pj by survey network design.  

      The adjusted length ( )adj ijS  is 

= +( ) ( ) ijadj ij obs ijS S v                            (6) 

where ijv is the residual in the measurement, and ( )obs ijS  is the measured length of a line between 

monuments Pi and Pj . 
      On the other hand, , ,i i jdx dy dx  and jdy  are the corrections to the initial approximations such 

that  
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where ijdS  is 
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      Thus, equation (6) and (8) yields 
+ = +( )ij ij ijobs ijS dS S v                                    (10) 

Replacing equation (10) by = − ( )ij obs ijl Sij S  . 
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Therefore, equation (11) is the observation equation for distance. 
 
2.4 Description by Matrices of Observation Equation for Distance 
 
      The equation (11), which is the observation equation for the distance, can be described under 
below by the matrix.  



 
 
  
            − − − −   = − − −              
  
 
  

M
L L L L L L L

MM O MM
ML L L

M M
L L L L L L L

M

i

i

j i j i j i j iij ij

ij ij ij ij j

j

dx
dy

x x y y x x y yv l
S S S S dx

dy

          (12) 

      The equation (12) is equal to the equation (1), which is observation equation by the matrix. 
Therefore, The normal equation of equation (12) is the equation (4). 
 
3. SURVEY NETWORK DESIGN BY Q  
 
3.1 The Standard Deviation for the Coordinate of Monuments,  

The standard Deviation for the Observation and Q  
 
      Rewriting the normal equation (4)  

− −= =1 1( )T T TX A A A L N A L                      (13) 
      In equation (13), X is the unknown coordinates vector for the monuments, L is the vector for 
observed lengths. 
      The standard deviation for the X , which is the coordinates of monuments, is described such 
that  

=s om m Q                                                (14) 

where om  is the standard deviation for the observed length, and Q  is the elements of the 

matrix −1 TN A  in the equation (13). These elements of the matrix correspond to the monuments 
ID. As mention above, the matrix A is composed of designed coordinates of monuments. 
Therefore, the elements of the matrix Q  can know composing of observing sides in advance. 
 
3.2 Design for the Survey Network by Q  
 
      In the equation (14), om  is the standard deviation of the observing sides. In the case of the 
design and preanalysis for the survey network,  om  is supposed to the precision of the distance 
measurement instrument. For example, MEKOMETER ME5000 is ± + ×(0.2 0.2 .)mm ppm Dist , 
Laser Tracker is µ±20 m . 
      When required the precision of monuments is sm , the survey network is determined as 
following below 

≥s om m Q                                               (15) 



      In the equation (15), om  is the accurate of the instruments. Therefore, the equation (15) is 
rewriting as following below 

≥s

o

m Qm                                                 (16) 

Thus, the optimal survey network is determined by Q  which is satisfying by the equation (16). 
 
4. THE SUBSTANTIATION ON THE SYNCHROTRON SURVEY NETWORK 
 
      the Siam Photon Project is the complex of the storage ring at Thai Land. There is no obstacle 
for the survey sights. It can observe from one monument to all monuments. Hence, it confirm the 
accuracy of the monuments, which is the error ellipses, by the Q . 
 
4.1 The Substantiation on the Synchrotron Survey Network at Siam Photon Project 
 

(1) CASE  1 (Fig.2,3) 
 

This survey network is the most simple. It is surveyed between neibour vertex of octagon, 
and from the center to the vertex (Fig.2).   

 
(2) CASE  2 (Fig.4,5) 
 

The difference of ,x yQ Q  become smaller, and Q  is improved (Fig.4). The results of 

the error ellipses are smaller than CASE 1 (Fig.3). 
 
(3) CASE  3 (Fig.6,7) 
 

This survey network is the most complicate (Fig.6). It is surveyed all sights. Q  is the 

smallest of all cases. The difference of ,x yQ Q  is the smallest. The results of the error 

ellipses are smallest (Fig.7). And the error ellipses is not ellipses but circle. That is to say the 
most precise monuments.  

 
(4) CASE  4 (Fig.8,9) 
 

This survey network is eliminated sights from center to vertices of octagon and from vertices 
to vertices. This case assume large ring (Fig.8). The difference of ,x yQ Q  is the largest. 

The results of error ellipses are is too difficult to secure the precision of the direction for the 
radius of the ring (Fig.9). 

 
Thus, the relationship between the error ellipses and the Q  have been confirmed. 
 



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig. 2 The survey network and Q  on the CASE 1            
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Fig.3  The results of the errors ellipses 
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Fig.4 The survey network and Q  on the CASE 2
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Fig.5   The survey network and Q

n_case2_ellip.eps

so = 0.16 [ mm ]

surveyed by MEKOMETER  ME5000

0.
08

0.07

0.08

0.
07

0.08

0.
07

0.
08

0.07

0.
08

0.07

0.08

0.
07

0.08

0.
07

0.
08

0.07

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8



 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig.6  The survey network and Q  on the CASE 3 

(a)   Survey  network  of  CASE 3

(b)       Q      of  monuments on the CASE 3
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Fig.7  The results of the errors ellipses 
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Fig.8   The survey network and Q  on the CASE 4

(a)    Survey  network  of  CASE 4

(b)       Q     of  monuments on the CASE 4
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Fig.9  The results of the errors ellipses 
 
 

 
 
5. CONCLUSION 
 

The sizes, shapes and orientations of error ellipses are dependent on (1) the control used to 
constrain the adjustment, (2) the observational precisions, and (3) the geometry of the survey 
network. The last two of these elements are variables that can be readily altered in the design of a 
survey in order to produce optimal results. Especially, in the equation (14), the method by Q  
which describe the characteristic of the survey network for the geometry is very effective to the 
preanalysis, the alignment plan and the survey network design.  
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