
Bringing COM Technology to Alignment Software
∗

Lothar Langer

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

1 Introduction

The Component Object Model (COM) is an application programming interface (API) that

allows for creation of so called ‘objects’. These objects are software constructs to be

useful for the service they provide for a client. The client may be another piece of

software, a conventional application program or possibly another ‘object’. Objects are

packaged in ‘components’. Here ‘component’ means the (more physical) representation

of software – a data file on some storage medium.

If you boil it down to a level of software using software – what is special about COM

(except being originated by Microsoft) ? There are already successful concepts like

libraries, class libraries, dynamic link libraries and the like. To make these software

pieces work together you need ‘interfaces’ which are basically contracts about how to

give and how to take. Either side has to comply to these contracts. But - writing computer

programs comes with a bunch of different languages on different hardware and software

platforms. To link to a libraray is very dependent on language and platform. It is about

compatibility of data types and calling conventions. That is why libraries are reused

mostly inside the world defined by a computer language or a platform boundary.

But software still is “only” bits and bytes. Here contracts (interfaces) specified on a

binary level – that sounds like a cute way to go. COM is just a binary specification. It

doesn’t tell you how to build components. It tells you how to connect to a COM object.

That makes it language independent - and platform independent too (at least in theory).

There should be some software vendors offering COM on Unix.

COM has competition, in terms of technoloy. The Common Object Request Broker

Architecture (CORBA) answers the same questions as COM. But it has not reached the

same importance.

Around COM exists a bundle of higher-level technologies, heavily promoted by

Microsoft. Most famous perhaps is ActiveX that has been designed for use in web

applications and many other kinds of ‘containers’.

∗ Work supported by Department of Energy contract DE-AC03-76SF00515.

Bringing COM Technology to Alignment Software

2 The Component Object Model (COM) and ActiveX
Technology

Objects and Interfaces

COM objects are well encapsulated. You cannot gain access to the internal

implementation of the object. That means for example you have no way of knowing what

data structures the object might be using.

Objects ‘live’ through interfaces. An interface is the object’s point of contact to the

outside world. The outside world in terms of COM are various application programs.

They act as clients asking the server object for some kind of service. All what a client

gets from COM is a pointer to the interface.

ObjectInterface pointer

Interface

An interface is some data structure that sits between the client’s code and the object’s

implementation through which the client requests the object’s services. Actually the

interface pointer is a pointer to a pointer to an array of pointers to the functions in the

interface.

Figure 1 COM objects are ‘black boxes’ with interfaces as their only points of access.

Bringing COM Technology to Alignment Software

Interface pointer

Vtable pointer

Pointer to function1

Function1(…)

{

…

}

Pointer to function2

Function2(…)

{

…

}

Pointer to function3

Function3(…)

{

…

}

…

…

The binary standard for a COM interface means that an object creates a vtable (virtual

function table) that contains pointers to the implementations of the interface member

functions and allocates a structure in which the first 32 bits are a pointer to that vtable.

The client 's pointer to the interface is a pointer to the pointer to the vtable.

Function tables can be created ‘manually’ in a C application or almost ‘automatically’

with C++ (and other object oriented languages that support COM).

Interface characteristics

In order to avoid name collisions interfaces are uniquely identified through a 16-Byte

value called a GUID (Globally Unique ID)
1
.

In binary terms, a GUID is a data structure defined as follows, where DWORD is 32-bits,

WORD is 16-bits, and BYTE is 8-bits:

1 “The term GUID… is completely synonymous and interchangeable with the term “UUID” as used by the

DCE RPC architecture …The GUID design allows for coexistence of several different allocation

technologies, but the one by far most commonly used incorporates a 48-bit machine unique identifier

together with the current UTC time and some persistent backing store to guard against retrograde clock
motion. It is in theory capable of allocating GUIDs at a rate of 10,000,000 per second per machine for the

next 3240 years, enough for most purposes.” See p. 69 [COM 95]

Figure 2 The calling mechanism referred to as the ‘binary standard’ makes language independence for

COM object implementation possible.

Bringing COM Technology to Alignment Software

typedef struct GUID {
DWORD Data1;
WORD Data2;
WORD Data3;
BYTE Data4[8];

} GUID;

One object can support multiple interfaces. You can have and in many cases will have

multiple interfaces on each type of object. As interfaces evolve over time changes in

definition or semantics of functions should result in a new identifier meaning a new,

additional interface on the object. Thus versioning problems are avoided.

Interfaces - kind of object oriented

When dealing with COM objects the client always handles interfaces of objects, never the

object itself. Yet there are some object oriented features to interfaces.

Inheritance is possible among hierarchicallly derived interfaces, but only for function

definitions, implementations have always to be provided.

Interfaces are polymorphic through the special interface IUnknown.

Pointer to function1

Pointer to function2

Pointer to function3

…

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Function table to IUnknown
Function table to

another interface

A pointer to this

interface can also

be used as a

pointer to

IUnknown

Figure 3 The three basic functions of IUnknown are inherited to every COM interface.

Bringing COM Technology to Alignment Software

Base Interface IUnknown

“IUnknown is the label of the interface that represents the functionality of an object when

all else about that object is unknown.”
2
 IUnknown provides the most essential services

with only three functions.

• QueryInterface provides navigation through the interfaces of an object. Always a

pointer to IUnknown can at least be obtained.

• AddRef and Release provide lifecycle management for an object through reference

counting. That means an object is kept ‘alive’ in memory as long as there exists at

least one reference to one of its interfaces. When the last interface has been

released the object will go out of service. It will then be cleared from memory.

Clients and Servers

The concept of client/server interaction does not only mean a client program (EXE

module) using a server object (DLL module). Objects may exist inside executable

programs. And one object (DLL) can also be using another object (DLL or EXE).

COM ‘s idea of location transparency is that clients and servers never need to know how

far apart they actually are, that is, whether they are in the same process, different

processes, or different machines. COM provides transparent access to local and remote

servers through proxy and stub objects.

If the client and server are in the same process, the sharing of data between the two is

simple. However, when the server process is separate from the client process, as in a local

or remote server, COM must format and bundle the data in order to share it. This process

of preparing the data is called marshalling. Marshalling is accomplished through a

"proxy" object and a "stub" object that handle the cross-process communication details

for any particular interface (depicted in Figure 4). COM creates the "stub" in the object's

server process and has the stub manage the real interface pointer. COM then creates the

"proxy" in the client's process, and connects it to the stub. The proxy then supplies the

interface pointer to the client.

2
See p 65 [COM 95]

Bringing COM Technology to Alignment Software

In-Process

Object

Client

Application

Local
Object
Proxy

Remote
Object
Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local

Object

Local Server

Stub

COM

Local Server Process

Remote

Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

As mentioned in the introduction COM is an application programming interface (API)

providing vital services for the functioning of client/server interaction. But the presence

of the COM Runtime Library in memory is “only” needed for object creation and passing

the first interface pointer to the client. Pointers to other interfaces on the same object can

be obtained through the above mentioned QueryInterface function. By inheritance

through IUnknown every interface posseses such service.

Figure 4 Three different situations of location transparency. The client application does not have to

care about where the server object is actually running.

Bringing COM Technology to Alignment Software

Client

Application

COM

Server

Object

(1) “Create
Object” (2) Locate

implementation

(3) Get object
interface pointer,
return to Client

(4) Call interface
members

The COM Runtime Library uses a class identifier to provide ‘implementation locator’

services to clients. A client need only tell COM the class identifier it wants and the type

of server—in-process, local, or remote—that it allows COM to load or launch. COM, in

turn, locates the implementation of that class and establishes a connection between it and

the client.

COM classes

According to the paradigm of object orientation there also is a concept of classes of

objects. COM classes give all the information that is needed to create a COM object.

Because there are no details of implementation specified in COM the only thing COM

needs to know about the class of an object is where to find it. So there exist class

identifiers similar to the above mentioned interface identifiers. COM classes are globally

uniquely identified by GUIDs – and not by their names. So providers of COM objects can

use identical names for their object classes and interfaces. Still they can be kept apart by

COM. They will have different GUIDs because of the way these identifiers are generated.

How does COM know about all the object classes and interfaces?

The information about available object classes and interfaces on a given system is

centralized in the Windows registry in case of Win32 platforms. With help of this

Figure 5 The COM runtime library basically initializes the client / object communication and then

drops out of the scene to reduce the overhead.

Bringing COM Technology to Alignment Software

‘database’ for systemwide information COM can do the mapping from component name

to GUID and finally to the file where the implementation code resides.

ActiveX Technologies

ActiveX is Microsoft ‘s marketing name for a bundle of technologies that are built on

COM. Very popular are ActiveX controls. These are components which provide all kinds

of visual support and effects in a context of graphical user interfaces (GUI). They also

can be applied in HTML document through the <OBJECT> tag.
3

ActiveX has the power to integrate technologies that are useful on the web. As a

consequence you can see more and more scripting languages offer COM support. Besides

Microsoft ‘s VBScript and JScript there is PERL, a very popular ‘web language’, that

offers ActiveX support.
4

3 Building Tools for WinGEONET

WinGEONET is built using Microsoft Visual Basic (VB). It handles a number of file

formats in which data are stored during various steps of processing. Here the use of COM

objects brings a lot of simplification and enhancement.

Visual Basic environment

Visual Basic is particularly COM friendly. If you try to call a conventional DLL

(Dynamic Link Library) written in C or C++ from within Visual Basic you will know that

it is a job with very unsatisfying results when you pass parameters to a C/C++ function.

Everything is at ease when you build an ActiveX component in C/C++ and use it from

VB as the ActiveX client. One reason is VB ‘s support for using ActiveX objects.

Another reason is VB ‘s preference for the ActiveX friendly data type VARIANT. Also

building ActiveX components from Visual Basic has got a standard job for VB

programmers.

3 See Objects, Images, and Applets in [HTML4]

4 See [PERL]

Bringing COM Technology to Alignment Software

disk

files

LEGOServer

WinGEONET

DataHandler SIMS

Data Availability from different sources

WinGEONET collects and processes data from various sources in different formats. Raw

data may come out of ASCII files which are formatted in at least 3 different ways. Data

may have to be read from an Excel spreadsheet or a relational database. This kind of job

happens almost all the time. Various applications have to import data before they can

process it in some way. It is obvious that handling data storage and making data available

are tasks that can be centralized in one separate component. This component is called

‘DataHandler’. It has three kinds of objects.

The DataConnection object provides services needed to make geodetic data available out

of diverse structures and formats. It comes in a close relation to a second object, namely

DataItem.

The DataItem object is a container for raw data items. A DataItem object is basically a

hash table where the values are VARIANTs. The value can thus be another DataItem

object. DataItem objects are extendable and very flexible.

A third object, named DataItemViewer, provides just a basic view on the tree structure of

DataItem containers.

Figure 6 Component design promises numerous benefits concerning practicability and performance for

a toolbox like WinGEONET.

Bringing COM Technology to Alignment Software

IDataConnection

DataHandler

DataItem

IDataItem

Client

applications

(SIMS,

MatLab,

web pages)

IDataItemViewer

Mathematical Computations

Math routines is another issue for reuse from various clients.

For WinGEONET the math package LEGO is vital.The connection to LEGO has been a

difficulty because LEGO is written in C++. LEGO used to read an input file, do

computations on the data, and write results into an output file.

LegoServer is LEGO in a COM object. That is why it can accept data from a Visual

Basic client in WinGEONET and do calculations. The results can be collected by the

same or a different client, for instance SIMS. Thus the intermediate steps of creating

input and output files can be passed. If necessary for persistence purposes data in various

formats can be stored using DataHandler.

LegoServer knows a bunch of COM objects and their respective interfaces (ISta, ITar,

IMes, IResult). But they are not creatable from outside. The client can only create and use

them through an interface called IProject.

Figure 7 The DataHandler object makes data available in a container object called DataItem.

Bringing COM Technology to Alignment Software

LegoServer.dll

IResult

IProject

alloc(…)

Sta()

Tar()

AllDir()

AllDist()

AllDifH()

LegoL2(…)

Result()

ISta ITar IMes

Lego.dll

Project.dll

Feedback.dll

Graphical Presentation Tools

Sims has got ActiveX server capabilities. It is possible to call some document-related

services (open, close, and import of data into a document) from an ActiveX controller

like VB, for instance.

More integration with more COM

In the near future there will be more integration through the ‘Data Availability’ services

which will be extended by data persistence and shared containers.

4 SIMS & LegoServer

SIMS has originally been an application program for visualization and simulation of

geodetic data. Since it is integratied into WinGEONET it is on its way to a generalized

tool for graphical presentation. SIMS is able of displaying geodetic networks in different

views from a single set of data in a document file.

For displaying error ellipses in the different views it uses LegoServer (see Figure 8). In

order to get reasonable response behaviour in the viewing window the calculation step is

performed in a separate execution thread.

Figure 8 LEGOServer handles LEGO ‘s computational services through function calls into the three

‘traditional’ DLLs.

Bringing COM Technology to Alignment Software

L
e
g
o
S
e
rv
er

Thread

Calculate()

SimsDocument

SimsViews

ErrorEllipse

alloc()

Sta()…

Tar()…

AllDir()…

AllDist()…

AllDifH()…

LegoL2()

.

.

.

Result()

5 Reusing ActiveX components in MATLAB

MATLAB is a powerful language for ‘technical computing’. It is based on calculations

with matrices which are multidimensional arrays of numbers. MATLAB has an

elaborated graphical user interface (GUI). A variety of specialized ‘toolboxes’ can be

added to MATLAB.

MATLAB environment

The MATLAB language can be extended by user defined functions. Functions reside in

M-files with the function ‘s name. They can be called with a list of input arguments and

they can return a list of output arguments. A MATLAB function can call any other

MATLAB function that is in the search path.

Using MATLAB ‘s function concept powerful applications can be programmed involving

own GUIs.

ActiveX connection in MATLAB

MATLAB supports ActiveX among other external interfaces (to Java classes, C and

FORTRAN).

Figure 9 LEGOServer handles LEGO ‘s computational services through function calls into the three

‘traditional’ DLLs.

Bringing COM Technology to Alignment Software

There is ActiveX client support. MATLAB can create ActiveX controls or server objects

and handle there respective interfaces. Event handling is possible only for ActiveX

controls.

There is also ActiveX server support. MATLAB itself exposes interfaces for ActiveX

clients (MATLAB being the server). A client can invoke a dedicated MATLAB ActiveX

server, a MATLAB instance that only serves him. Or it can share a MATLAB ActiveX

server instance with other clients.

Example: MATLAB Utilities

MATLAB Utilities is a collection of applications combining services of MATLAB and

other COM objects.

MatLab DataHandler

MatlabServer
IUtilities Script:

…

transform …

…

Transform

.exe

disk

files

The ‘transform’ command is a service available through the IUtilities interface of a COM

object named ‘MatlabServer’. MatlabServer is a windowless server component (EXE

file) and had been created for the purpose of centralizing several services which are using

the MATLAB engine. Here MatlabServer uses DataHandler (see Fig 7) to get data out of

disk files and it uses the MATLAB engine to calculate the transformation.. Finally

MatlabServer lets DataHandler store the results in a different set of disk files.

In another utility a DataHandler object is used directly by MATLAB to retrieve data

from files in order to perform graphical evaluation.

Figure 10 An application involving MATLAB and COM objects.

Bringing COM Technology to Alignment Software

6 Example of a presentation on the Web

DataHandler

disk

files

MS

Word

VBA

script

HTML

documents

Web

Browser

Perl

CGI-

script

This application involves two steps because of performance reasons.

• A VBA (Visual Basic for Applications) script that runs inside MS Word retrieves

data out of disk files via a DataHandler object. Then it inserts the data into

predefined locations in a form document which is generated from a document

template. The resulting MS Word documents are stored as HTML files.

• For the presentation a CGI (Common Gateway Interface) script written in PERL

provides the web browser with the appropriate HTML.

7 Conclusions

A software toolbox gains flexibility by component design. Tools can be programmed to

be very versatile by centralizing often reused functions. For the WIN32 platform the

Component Object Model would be the concept of choice for component design.

When agreeing on the basic design and coordinating the definition of interfaces a small

team of developers can create software components in a relatively independent way.

They can use different implementation languages.

Figure 11 Example of a web presentation using the COM object DataHandler.

Bringing COM Technology to Alignment Software

8 Acknoledgements

The author feels indebted to Catherine LeCocq as the supervisor for the Alignment

Engineering Group for her essential support in the development process concerning

especially component design. Thank you also to all other members of the Alignment

Engineering Group at SLAC for their readiness to help.

9 Bibliography

[Brock 95] Brockschmidt, Kraig. Inside OLE, 2nd edition,

Microsoft Press, 1995

[COM 95] Microsoft Corporation. The Component Object Model

Specification, Version 0.9, October 24, 1995 [online].

Available WWW

<URL: http://www.microsoft.com/oledev /> (1995).

[HTML4] World Wide Web Consortium

HTML 4.01 Specification, 1999

Available WWW

<URL: http://www.w3.org/TR/REC-html40 />.

[PERL] O’Reilly Perl.Com

Downloading the Latest Version of Perl, 2002

Available WWW

<URL: http://www.perl.com/pub/a/language/info/software.html />.

	toc:
	HETO: Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8, 2002
	230: 230
	244: 244
	243: 243
	242: 242
	241: 241
	240: 240
	239: 239
	238: 238
	237: 237
	236: 236
	235: 235
	234: 234
	233: 233
	232: 232
	231: 231

