The ALICE Pixel Detector

P. Riedler, CERN ALICE SPD Team

PIXEL 2002 - 9/9/2002

Overview

· ALICE SPD

- Overview
- Physics performance
- Test Setups
- ALICE1LHCB chip
 - Single chip tests
 - Bus tests
 - Wafer probing
- •Assemblies and Ladders
 - Source tests
 - Test beam
- Conclusions and Summary

PIXEL 2002 - 9/9/2002

P. Riedler/CERN

2

Talks related to the ALICE SPD at this conference:

D.Barberis - Monday 9, 14:30-15:00 "Physics with second generation pixel detectors" A.Kluge - Monday 9, 15:00-15:20 "The read out system of the ALICE pixel detector" K.Wyllie - Monday 9, 15:20-15:40 "Front-end pixel chips for Tracking in ALICE and particle identification in LHCb" J.Salonen - Thursday 12, 9:20-9:40 "Flip Chip Hybridization of Pixel Detectors for ALICE and LHCb Experiments "

PIXEL 2002 - 9/9/2002

ALICE Silicon Pixel Detector - Overview

PIXEL 2002 - 9/9/2002

The two barrels will be built of 10 sectors, each equipped with 6 staves:

Sector - Carbon Fibre Support

INFN Padova

INFN Padova

Material budget(each layer)

 \approx 0.9% X₀ (Si \approx 0.37, cooling \approx 0.3, bus 0.17, support \approx 0.1)

PIXEL 2002 - 9/9/2002

Each Stave is built of two HALF-STAVES, read out on the two sides of the barrel, respectively.

Ladder: 5 chips+1 sensor

ALICE1LHCb chip

Silicon sensor

Grounding foil

193 mm long

Bus

Cooling tube Carbon-fibre sector

MCM

PIXEL 2002 - 9/9/2002

Bus:

- 7 layer Al-Kapton flex
- Wire bonds to the ALICE1LHCb chip

Cooling tests

~1.5 kW (1200 × 800mW+....) of dissipated power in the whole SPD
two phase evaporative cooling system under study

Infrared camera, measurement using resistive network

The ALICE SPD in numbers

- 60 staves
- 240 silicon sensors
- 1200 readout chips
- 240 ladders
- Bump bonds: 9.83 millions
- Wire bonds: ~150.000

SPD Collaboration

Universita e Sezione INFN Bari, Italy Universita e Sezione INFN Catania, Italy CERN, Geneva, Switzerland Slovak Academy of Sciences Kosice, Slovakia Laboratori Nazionali di Legnaro, Italy Universita e Sezione INFN Padova, Italy Universita e Sezione INFN Rome, Italy Universita e Sezione INFN Salerno, Italy Universita e Sezione INFN Udine, Italy

Physics Performance

 Secondary vertexing capability for charm and beauty detection

 Charged particle multiplicities of up to 8000 per unit of rapidity have been predicted for head-on Pb-Pb collisions at the LHC

• Pseudorapidity coverage of the inner layer: $|\eta| < 1.95$

• The two SPD layers allow to achieve a track impact parameter resolution in the r ϕ coordinate better than 50 μm for p_t >1.3 GeV/c.

A. Dainese - QM2002

Test System

A modular test system based on VME and LabView was developed in order to test:

- single chips
- chip wafers
- single assemblies
- ladders
- a full half-stave
- and for the test beam

Single chip mounted on card

Chip wafer

Test beam setup

ALICE1LHCb chip

- Mixed signal (analogue, digital)
- Produced in a commercial
 0.25µm CMOS process
- Radiation tolerant design (enclosed gates, guard rings)
- 8192 pixel cells
- 50 μ m x 425 μ m pixel cell
- ~100 µW/channel

Measurements carried out on one single chip and on one bump-bonded assembly using the test pulse

Low minimum threshold: ~1000 electrons Low individual pixel noise:~100 electrons

PIXEL 2002 - 9/9/2002

First Bus Prototype (Cu-Kapton Flex)

10 chips (pre-tested) mounted

PIXEL 2002 - 9/9/2002

M. Morel

PIXEL 2002 - 9/9/2002

Tests carried out on a bus equipped with 10 ALICE1LHCb chips

Mean Threshold

Tests of voltage sensitivity, sensitivity to clock signal and threshold measurements successfully passed.

Wafer probing

- Tests have been developed gradually during last year
- Completed test procedure for production since spring 2002: Current consumption, DACs, JTAG, min. threshold, threshold-scan

Introduced 3 chip classes:

1. Chips for bump bonding

mean th<30mV, <1% defect pixels, I analog < 350mA, I digital <270mA

2. Minor defects

missing columns, >1% defect pixels

3. Major defects

JTAG error (10-20%), DAC error, no/high current, digital out error

86 ALICE1LHCb chips per 200mm wafer

Example Class III: JTAG test on one wafer: 14 chips with errors

Crucial test: serial connection of all chips on a half-stave

Example Class I:

I_{digital}<270mA: no working chip exceeds this value

 I_{analog} <350mA: loose 15 working chips due to this cut out of 344 chips

PIXEL 2002 - 9/9/2002

Class I: 42-75% Class II: 6-12% Class III: 17-42% (sample: 4 wafer, 750µm)

Class I - Mean Threshold

Production testing will start this autumn

Ladders and Assemblies

• AMS/Italy In bumps

Detectors:

- single chip detectors
- 5 chip detectors for ladders
- p-in-n
- 300 µm thick(tests) final thickness: 200µm

Chips:

- single chips
- 750 μ m thick (tests) 150 μ m final

Detectors

- P-in-n detectors with simple guard ring structure
- Calculated fluence in ALICE: ~ 10^{12} (1 MeV n/cm²) in layer1 in 10 years
- Depletion voltage: 300µm test detectors: 21V, 200µm test detectors: 12V
- Production starting Winter 2002

Total Leakage Current vs. Bias Voltage

PIXEL 2002 - 9/9/2002

VTT Ladder2: Detector: 3.1µA @ 80V

Pixels with hits:

chip	Sr	Cd	
75	98.5 %	97.9 %	3 noisy pixel
67	94.1 %	94.2 %	2 noisy pixel
65	99.4 %	99.2 %	
58	99.5 %	99.5 %	
57	99.4%	99.5 %	1 noisy column

PIXEL 2002 - 9/9/2002

July 3-17, 2002 H4 test beam area, CERN

Trigger: 4 scintillators 2mm × 2mm beam spot

Reference planes: 2 mini-buses (4 pixel assemblies) with 16384 pixels each

Tested: 1 thick assembly 1 thin assembly (200µm det.) 1 full ladder

Beam spot

50-

0-

ά

10

5

Plane 2

Plane 0 PIXEL 2002 - 9/9/2002

15 20 25 30

Plane 1

Online Measurements

Ladder

Thin assembly

PIXEL 2002 - 9/9/2002

Reconstructed tracks in the ladder using the Mini-buses

PIXEL 2002 - 9/9/2002

Conclusions and Summary

- The ALICE1LHCb chip has been qualified for ALICE.
- A wafer testing procedure has been established.
- A 10-chip bus has been tested successfully in the lab.
- A full size ladder has been tested successfully in a test beam.

Next Steps:

- The complex assembly procedure is in preparation.
- 8" wafer thinning and assembly.
- Building a complete half stave is foreseen for 2003.
- System integration issues are under study.