X-ray Scatter-to-Primary Ratio versus Thickness Two analytic Models Evaluated Against Monte Carlo Calculations

J. Eric Tkaczyk GE Research, Niskayuna, NY

Outline

•Detectors at GE Research

•Relevance of Scatter/Absorptive Problem To Detectors

•Experimental Data

•Two analytic models

•Comparison to Monte Carlo Calculations

•Conclusions

γ GE Research

Niskayuna, NY – World Headquarters

	<u>Technical Repre</u> Chemistry Mechanical Physics Electrical Computer Sci. All Other	esentation 18% 17% 9% 18% 17% 21%

Bangalore, India

Shanghai, China

9/12/02

Global Research Organization

a-Si Flat Panel Digital X-ray Imager

Projected evolution for digital x-ray imaging •higher resolution pixels •greater patient coverage

9/12/02

•faster scanning

3

Multi-slice to Volume CT Detectors

Combined Absorption and Scattering Processes

9/12/02

Combined absorption/scatter phenomena is ubiquitous for detectors and imaging. The albedo = $W=\mu_{scatter}/\mu_{total}$ is useful to divide the problem space Detector studies seek to maximize the gain efficiency and minimize crosstalk

γ GE Research

Experimental Study of Scatter

Measurements with and without Pb Sheet Allows Scatter Measurement
Experimental Results were simulated with MC calculation using GEANT4

/ 1 = 0 =

Scatter is non-monotonic ... it is linearly increasing at small thickness and exponentially decreasing at large thickness

γ GE Research

General Solution

Diffusion equation used by Swank to model light propagation in scintillators

γ GE Research

[1] S.W. Smith and R.A. Kruger, "A signal processing model of diagnostic x-ray scatter," Med. Phys. 13, 831 (1986).

Augment the Method of Smith and Kruger

by including Back-Scattered Processes

Smith and Kruger model extended to include backscatter

GF Research

$$S_{T} = I_{o} \frac{\beta W}{(1-\eta)} e^{-\eta \mu} p^{T} \left(\frac{1+(1+c)\eta}{1+\eta}\right) \times \left[1 - \frac{(1+c/2)(1+\eta)}{1+(1+c)\eta} e^{-(1-\eta)\mu} p^{T} + \frac{c}{2} \left(\frac{1-\eta}{1+\eta}\right) \frac{1+\eta}{1+(1+c)\eta} e^{-(1+\eta)\mu} p^{T}\right]$$

Diffusion equation for slab geometry with perpendicular incidence.

$$S_{T} = I_{o} \frac{W/2}{(1-\eta)} e^{-\eta \mu} p^{T} \left(\frac{4\xi(1+\xi\eta)}{(1+\xi)^{2}(1+\eta)} \right) \times \left[1 - \frac{(1+\xi)(1+\eta)}{2(1+\xi\eta)} e^{-(1-\eta)\mu} p^{T} + \frac{1}{2} \left(\frac{1-\eta}{1+\eta} \right) (1-\xi) e^{-(1+\eta)\mu} p^{T} \right]$$

R.K. Swank, "Calculation of Modulation Transfer Function of X-ray Fluorescent Screens," (equation 23 was used), Appl. Optics, 12, 1865 (1973)

What is striking about this comparison is the similar exponential dependences obtained from such different approaches
The parameter η appears is both expressions and represents the relative attenuation of scatter compared to primary

γ GE Research

	Monte Carlo Params				1D mo	lel Fits Diffusion Mode			Fits	
kev	?? photo	élécomp	tontotal	albedo	?	С	?	?	?? expecte	d [?] expecte
30	0.1410	0.183	0.324	0.56	1.1	0	0.9	0.2	1.14	0.847222
40	0.0543	0.184	0.238	0.77	0.9	0.0	0.85	0.4	0.83	1.157773
50	0.0265	0.187	0.213	0.88	0.85	0.5	0.85	1.0	0.61	1.31338
60	0.0151	0.181	0.196	0.92	0.8	1.0	0.85	3.0	0.48	1.384439

Conclusion

 Fits to the analytic model to the MC calculation relates parameters in the analytic model to cross-section for scatter and absorption
Models can be used in studies of scintillator and photodiode performance