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1 Introduction 
 
An exact calculation of scatter can be expressed formally by a transport equation; 
[1] however, the exact solution is not generally known even for the simplest 
geometries.  Two analytic approaches to scatter modeling, one by Swank [2] and 
another by Smith and Kruger [3] are tested against the results of Monte Carlo 
calculations using GEANT4.  By treating parameters in the analytic equations as 
fitting parameters, one obtains a convenient way to parameterize measured data.  
The comparison to Monte Carlo results allows a match of parameters appearing 
in the analytic expressions to the physical parameters in the transport theory.  
Specifically, mono-energetic photons having single absorption and scatter cross-
sections are studied.  The two analytic approaches, although of very different 
derivation, yield similar expressions that capture the overall magnitude, the 
thickness dependence and photon energy dependence of the scatter-to-primary 
ratio. 
 
 

2 Smith and Kruger 1D Model 
 
Consider first the forward scatter trajectories labeled as process F1 and F2 in 
Figure 1.  For the purposes of the following analysis, one may generalize to a 
class of trajectories F(x)={Fi} to include all cases of multiple scatter following the 
initial scatter event at point s from the top surface.  Trajectories of type F are to be 
distinguished from B where the first event is scattered away from the output 
surface.  Together, F and B represent all possible scattering trajectories.  One may 
expect that the distinction between F and B is not important for cases where s is 
far from either the top or bottom surface.  For thick slabs, each makes an identical 
contribution to the total scatter.  However, for s close to the top surface (i.e. 
within a scattering length), the trajectories of class B are attenuated because of 
loss out the top.  A complementary situation exists at the bottom surface where 
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1st backscattered photons are likely to be rescattered and then exit out the 
bottom surface.  

As described by Smith and Kruger (SK), one makes an approximation that all 
forward scatter processes can be described by a single one-dimensional forward 
scatter cross-section βµC where 0<β<1 is a constant and µC is the total scatter 
cross-section (including Compton and coherent scattering). Furthermore the 
attenuation of the scatter from the 1st generation site to the  
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Figure 1:  Forward and backscatter processes considered in the 1D model. 
 

output surface, irrespective of the actual path length, is given by exp(-ηµP(T-x)) 
where 0<η<1 is a constant and µP is the attenuation constant of the primary. 
Within  the context of the SK model, β~0.5 corresponding to the part of the total 
(isotropic) scatter cross-section which is forward scattered.  Similarly, one may 

expect that ηµP ~ µP-βµC.  That is, the attenuation of the scatter is less than that of 
the primary by the amount equal to the forward scatter cross-section. 

With this approximation, SK obtain the forward scatter by integrating over the 
thickness as follows: 
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where Io is the input intensity at the top surface and W=µC/µP is called generally 
called the albedo. Within the integrand, the first and second exponential terms 
account for the attenuation of the primary and scatter, with attenuation constants 
µP and ηµP respectively. Note that at small values of µPT~0, this  
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Figure 2  The monte carlo results at 60kev are fit to a modified Smith-Kruger 1d scatter 

model which includes backscatter, fit parameters are η=0.80, and c=1.0.  The 
contribution from backscattering at large thickness is 44% of forward contribution 

 

expression makes a linear contribution SF= IoβµCT, which is the expected result 
given the definition of βµC as the forward scatter cross-section for the single 
scatter case.  

Note that in the SK paper the bracketed prefactor βµC /(1-η)µP is set equal to 1. 
This is equivalent to making the following identity ηµP = µP-βµC, that is the 
effective scatter attenuation constant is the primary attenuation constant minus 
the forward scatter contribution. This is an approximation used in the SK paper 
but causes of the model to underestimate the measured value of scatter by a 
factor of order 2 or 3.  In fact, the nature of the fits to the data at large thicknesses 
force η~0.7 to 0.9.  Given that β~0.5 and µC /µP ~0.7 to 0.9, we find the bracketed 
factor is of the order of 2 or 3 because of the small value of 1-η.    

 

3 Extension of Smith and Kruger model  
 
Referring to the diagram for process B in Figure 1, the contribution from the1st 
backscattered photons is estimated as follows.  
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A new parameter, c, is introduced to parameterized the effective cross-section for 
backscattered photons. One can place a constraint on the constant c by restricting 
the backscattered contribution at large thickness to be equal to or less than the 
forward one.  Consider the expression above at large values of T.  SB makes a 
contribution similar to the forward one but weighted by the ratio of the forward 
and backward cross-sections (1-β)/β and the factor cη/(1+η).  Since for Compton 
scattering, β≥0.5  (i.e. forward directed at high energy), the former factor is equal 
to or less then 1. Restricting the backscattered contribution at large thickness to 
be equal to or less than the forward one suggests that 0<c≤(1+η)/η.  For c=(1+η)/η 
the forward and backscattered contributions are equal at large thicknesses. At 
small values of µPT<1, SB is of order (µPT ) 2<<1 and make little contribution 
compared to the forward scattering component. 

Assuming that β=(1-β)=0.5, the total scatter is obtained by summing the forward 
and backward contributions calculated above to obtain the formula shown in 
Equation 3.  This is the extension of the SK model and it will be compared to the 
diffusion model.  A fit of this two parameter model to the Monte Carlo results at 
60kev is shown in Figure 2 along with the individual forward and backward 
contributions.  The fit parameters are η=0.80, and c=1.0.  At large thicknesses the 
backscattered contribution is  44% of the forward scatter contribution. Fits of 
similar quality are obtained at other energies with fit parameters shown in table 
I.  Note that for 30 and 40kev there is no backscatter contribution.  

The trends with decreasing kev, both the decrease in magnitude and shift in the 
peak to lower thickness, are reproduced by this two parameter model in a very 
satisfactory way.  This may be expected because the photoelectric cross section is 
a larger percentage of the total cross section.  There is no detailed accounting in 
this 1d model of the photoelectric versus Compton cross-sections except for the 
presence of the albedo (i.e. W) as a prefactor in Equation 3.  However, this W 
prefactor does is not sufficient to account for observed change in scatter 
magnitude  The values of the albedo are listed in Table II for different keVs. 
Rather, within this 1d model it is the change in the backscattered contribution 
(i.e. the c parameter) which effectively parameterizes the decrease in scatter with 
decreasing keV.   
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Equation 3  The 1d scatter model of Smith and Kruger extended to include backscatter 
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Equation  4 The solution to the diffusion equation for slab geometry with perpendicular 
incidence. 
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 Table I Parameters used in the Monte Carlo simulation and the fit parameters of 
analytic (but approximate) scatter models.   

 

4 Diffusion Model 
 

The solution of the diffusion equation is obtained by Swank (his equation 23) , 
and by Ishimaru (his section 9-4)and shown in Equation 4 and involves two 
parameters, η= µS/ µP and ξ= µtr / µP. Note the similarity to Equation 3 derived 
above from the 1d approximation.  In fact, in the limit of ξ=1, the expression for 
forward scatter (Equation 1) is obtained exactly.  

The derivation of Equation 4 is involved and will not be repeated here.  
However, some insight as to these two parameters can be gained from inspection 
of how they enter into the derivation.  The parameter η is present in the 

Monte Carlo Params 1D model Fits Diffusion Model Fits
kev µ−photo µ−comptµ−total albedo η c η ξ η−expectedξ−expected
30 0.1410 0.183 0.324 0.56 1.1 0 0.9 0.2 1.14 0.847222
40 0.0543 0.184 0.238 0.77 0.9 0.0 0.85 0.4 0.83 1.157773
50 0.0265 0.187 0.213 0.88 0.85 0.5 0.85 1.0 0.61 1.31338
60 0.0151 0.181 0.196 0.92 0.8 1.0 0.85 3.0 0.48 1.384439
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attenuation term in the diffusion equation.   It represents the effective attenuation 
length scale of the scatter field in the bulk and parallels equivalent η parameter 
in the 1D model. The second parameter in Equation 4, ξ, is the ratio of the 
"transport cross-section" to the primary cross-section. It appears in only in the 
boundary condition and characterizes the reciprocal length scale of relaxation of 
the scatter intensity away from surfaces or sources.    

Within the context of the diffusion the two parameters η, ξ are related to the 
physical attenuation coefficients for photoelectric and Compton processes.[4].  
However, because the diffusion equation is only approximate near surfaces, this 
relationship is not found to hold for the fits.  We treat these as fitting parameters 
in the model.  The functional dependence of these parameters on keV ( or 
equivalently the albedo) is obtained by fits to the Monte Carlo data as listed in 
Table II. The quality of the fits is similar to Figure 2.  Operationally, the η 
parameter controls the magnitude and shape of the scatter as a function of 
thickness.  The parameter ξ largely scales the magnitude of the curve without 
much influence on the shape. 

As a function of keV, the η parameter is close to 0.85, a value similar to that 
found in the 1D model.  This suggests a consistent picture for this parameter, that 
the attenuation of the scatter field is slightly less than that of the primary field.   

The functional dependence on object thickness is strongly controlled by this 
parameter.   

The ξ parameter (and c parameter in the 1D model) increases with increasing 
kvp.  This effectively parameterizes the shrinking role of the top boundary on the 
scatter field.  At low kvP, the stronger absorptive attenuation of the primary 
means that much of the scatter is generated near the top surface of the object and 
much of this escapes.   
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