Active Pixel Sensor Architectures in Standard CMOS Technology for Charged-Particle Detection

<u>D. Passeri^{1,2}</u>, P. Placidi^{1,2}, L. Verducci^{1,2}, G.U. Pignatel^{1,2} P. Ciampolini³, G. Matrella³, A. Marras³, G.M. Bilei¹

- (1) Istituto Nazionale di Fisica Nucleare Sezione di Perugia - Italy
- (2) Dipartimento di Ingegneria Elettronica e dell'Informazione Università degli Studi di Perugia - Italy
- (3) Dipartimento di Ingegneria dell'Informazione Università di Parma - Italy

Outline

- Introduction.
- Active Pixel Sensor in standard CMOS technology.
- Technology Optimization.
- Design flow.
- Architectures of charged-particle CMOS sensors.
- Results analysis.
- Conclusions.

Technology Analysis

Technology Hints for CMOS APS

- EPI layer importance ...
- Substrate generation contribution is important !
- n-well depth impact on charge collection...

Standard CMOS (deep-submicron) technologies:

- Smart read-out electronics integration is easier.
- C_{photodiode} is lower, S/N is still acceptable.
- Better control of life-time of the technology node.

> Comprehensive technology-node analysis...

Technology Options

Voltage responses as a function of the sensitive element area for different particle trajectories: (a) central, (b) lateral.

Technology Options (2)

 $\Delta V_{\rm A}$ swing greater than $\Delta V_{\rm B}$!

 $\Delta V_{A\ 0.18}$ swing greater than $\Delta V_{A\ 0.25}$!

The 0.18 μm technology has been selected !

Design flow

CADENCE IC Design System

APS matrix architecture Pixel size 3.3 x 3.3 μ m² Serial row scan / serial out ($n \times n T_{CLOCK}$) 32 / П DECODER_5_32 APS 32x32G1P0 \Box Ð AMPLIFIER REGIST -0 DIFF a SHII COL EN AB...COL_32_32 ►D NEG COL EN ►D Х D D^{-5} MULTIPLEXER 32 1 ≻D

APS simulation results

WIPS Mixed-Mode Analysis

WIPS simulation results

RAPSO1 chip layout

Conclusions

Standard VLSI CMOS technologies have been evaluated for the implementation of charged-particle detectors.

Deep submicron technologies appear suitable for such a purpose, allowing for increased spatial resolution and for the integration of smart read-out electronics.

Different pixel architectures have been proposed, especially tailored for the detection of single hits, thus allowing for a simplification and a potential speed-up of the read-out system.

The design of a set of prototypes has been completed, and their fabrication in 0.18 μm technology is under way.

The project is supported by the Italian I.N.F.N. (RAPS gr. V).