

Eutectic Sn/Pb Fine-Pitch Solder Bumping and Assembly for Rad-Hard Pixel Detectors

Alan Huffman

MCNC

Advanced Packaging and Interconnect

Sept 11, 2002

Outline

- MCNC Overview
- Solder Bumping Overview
- Fermilab Pixel Detector Bumping (BTeV)
- NWU Pixel Detector Bumping (US-CMS)

MCNC - Who We Are

- A non-profit technology development and service company.
- Customer base includes
 - Government agencies
 - Academic institutions
 - Commercial companies
- For-profit spinoff companies
 - Unitive Electronics high volume commercial bumping
 - Cronos Integrated Microsystems commercial MEMS provider, acquired by JDSU, now part of MEMSCAP
- Technology Groups
 - Materials and Electronic Technology Division (METD)
 - Signal Electronics Division
 - Network Research Division
 - High Performance Computing and Communications

NEWS FLASH!

- In October, the technology development groups will spinoff and retain the MCNC name.
- No services, staff, or assets will change.

METD Research Focus Areas

- 3D and Heterogeneous Integration
- Advanced Packaging and Interconnect
- Organic Electronics and Optoelectronics
- Novel Sensors and Actuators
- Prototype Development and Foundry Services

MCNC Flip-Chip Bumping Services

- Full-service prototype and low volume bumping and flip-chip assembly supplier.
- Bump fabrication facilities for 3"- 8" wafer sizes.
- Current production bump size: 25-micron bumps on 50-micron pitch (40,000 I/O per cm²); smaller available on developmental basis.
- Thermal and mechanical reliability services
- Analytical services through MCNC Analytical Labs
 - Cross sectioning
 - SEM, XRF, EDS
 - X-ray photomicroscopy for bump integrity verification on assemblies

Bump Design Rules

- I/O pad pitch
 - Rule of thumb bump base diameter is 1/2 the smallest
 I/O pad pitch.
- Wafer final passivation opening size
 - Affects size of via openings in repassivation layer.
- Final passivation material on wafer
 - Inorganics (i.e. SiN, SiO2) are preferred, organics (i.e. polyimides) can be used depending on material and processing conditions.
- Desired bump height
 - Maximum bump height is limited by bump base diameter (a function of I/O pad pitch).

Bumping Process Overview – ROC wafer

Five Main Process Steps

- Repassivation Dow Chemical Cyclotene™
 - Low dielectric constant 2.6
 - Photopatterned vias connect bumps with I/O pads
- UBM Deposition
 - Cu-based blanket metallurgy engineered for long-term reliability and mechanical bump strength
- Eutectic Sn/Pb Solder Electroplating
 - Plated into openings defined in a thick photoresist
- UBM Etching
 - Removal of field UBM from wafer, UBM under bumps remains intact
- Wirebond Pad Opening
 - Dry etching of BCB reopens access to wirebond pads

Bumping Process Overview – Sensor Wafer

- Four Main Process Steps
 - Repassivation
 - UBM Deposition
 - Ni/Au Solder Bondpad Electroplating
 - Au provides a solderable surface, Ni forms intermetallic with Sn to provide mechanically strong bond
 - UBM Etching

Flip-Chip Assembly of Pixel Detectors

- Multiple chip placements on a single substrate are required
- Two flip-chip aligner/bonders from Research Devices
 - Placement accuracy of 3 microns or better
 - Reflowed device alignment ~ 1 micron
- Nitrogen-inerted reflow system provides accurate control of reflow operation
- Accuracy of dicing operation is critical to ensure that chips can be placed next to each other.
 - In-house dicing facilities allow tight control over dicing procedure
- Fluxless assembly is used due to the difficulty of removing flux residues

Standard Vs. Fine Pitch Assembly

100µm 250X

100µm 250X

- SEM cross sections of commercially available 250-micron pitch and 50-micron pitch assemblies
- Chip-to-substrate gap reduces from 65 microns to 22 microns for the 50-micron pitch design

PADS (Plasma Assisted Dry Soldering)

- Patented plasma process breaks up Sn oxide surface during reflow, allowing wetting without flux.
- PADS leaves no residues on chip or substrate
- R&D Magazine Technology 100 Award, 1996

BTeV Pixel Detector Bumping

- Two test phases completed using internally generated 50-micron pitch daisy chain test design.
- Two device build phases completed using 4-inch SINTEF and Atlas prototype sensor wafers and 6and 8-inch FPIX readout chip (ROC) wafers.
- Bump dimensions
 - Base diameter 25 micron
 - Typical bump height 30 micron
- ROC wafers will require thinning after bumping to 200 microns by external vendor before assembly.

Bumped FPIX ROC

Atlas Prototype Sensor With Solder Bond Pads

BTeV - Bump Yield Results*

- Yield numbers from tests performed on daisy chain test design
 - Assembly yield of 91.5%
 - Channel yield of 99.32% or 6.8x10⁻³ failedchannel/channel
 - Bump yield of 99.95% or 4.5x10⁻⁴ failure/bump
 - Assumes one failed bump per channel
 - Internal studies of separated assemblies show this is largely valid

* S. Cihangir and S. Kwan; talk presented at 3rd International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices, Florence, Italy (June. 28-30, 2000).

BTeV - Thermal Cycling Results*

- Test conditions, performed on daisy chain test design
 - 10°C for 144 hours
 - 100°C in vacuum for 48 hours
- Measurement after cooling
 - 4.6x10⁻⁵ failures / bump on Known Good Modules
- Measurement after heating
 - 3.3x10⁻⁴ failures / bump on Known Good Modules
- Measurements may be affected by trace and/or probe pad damage due to repeated probing

^{*} Cihangir, et. al.; talk presented at 7th Workshop on Electronics for LHC Experiments, Stockholm, Sweden (Sept. 10-14, 2001).

BTeV - Radiation Exposure Results *

- Test conditions, performed on daisy chain test design
 - 13 MRad dose from Cs-137 source
- Failure rate: 1.8x10⁻⁴ failure / bump
 - Failure rate may be affected by radiation damage on Al lines or probe pads
 - Test design chips are NOT rad-hard

^{*} Cihangir, et. al.; talk presented at 7th Workshop on Electronics for LHC Experiments, Stockholm, Sweden (Sept. 10-14, 2001).

BTeV - Future Plans

- Prototype phase expected to continue with new sensor and ROC designs.
- Preproduction phase assembly requirements
 - 10% build of full production module quantities, approximately 140 modules with >800 total chip placements on 4-, 5-, 6-, and 8-chip modules
- Production phase assembly requirements
 - Approximately 1800 modules
 - >10,500 total chip placements

US-CMS Pixel Detector Bumping

- Two concept test phases completed using internally generated 100-micron pitch daisy chain test design.
- Bump dimensions
 - Base diameter 50 microns
 - Typical bump height 45 microns
- Future phases are moving to 25-micron bumps.
- Assembly of MCMs up to 5x2 arrays.
- Device ROC wafers will require thinning before assembly to sensors

US-CMS - Daisy Chain Test Design

Test Design - Sn/Pb solder bumps, 100um min. pitch

Test Substrate - Ni/Au bond pads

US-CMS - Bump Yield Results*

- Bump yield of .9997 ± .0001, measured at UCD by D. Lander
- Assumes only one failed bump bond on a failed trace
- Reasonable based on internal studies of failed traces

US-CMS - Module Assembly

NWU 3x2 MCM, partial build to show detail

Summary

- MCNC has demonstrated robust flip-chip bumping and assembly processes that meet the pitch and bump size requirements of pixel applications.
- Bump yields have been demonstrated to be acceptable for pixel detector applications by Fermilab (BTeV) and NWU (US-CMS).
- Thermal cycling tests indicate that the solder bump-bonded detector modules are robust and will survive construction and subsequent heat-up / cool-down cycles.
- Radiation exposure testing indicates a minimal effect on failure rates.
- Future work will concentrate on increasing the number of wafers processed and modules assembled to identify issues involved in moving from prototype phases to production.