Precision Measurement of sin²**q**_W from NuTeV

Jae Yu (for NuTeV Collaboration) University of Texas at Arlington SSI 2002, Aug. 14, 2002

- Introduction
- Past measurements
- Current Improvements
- What's so new about the results?
- Conclusions

NuTeV Collaboration

- T. Adams⁴, A. Alton⁴, S. Avvakumov⁷, L.de Babaro⁵, P. de Babaro⁷, R.H. Bernstein³, A. Bodek⁷, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁷, L. Bugel³, J. Conrad², R.B. Drucker⁶, B.T.Fleming², J.A.Formaggio², R. Frey⁶, J. Goldman⁴, M. Goncharov⁴, D.A. Harris³, R.A. Johnson¹, J.H.Kim², S.Kutsoliotas⁹, M.J. Lamm³, W. Marsh³, D. Mason⁶, J. McDornald⁸, K.S.McFarland⁷, C. McNulty², Voica Radescu⁸, W.K. Sakumoto⁷, H. Schellman⁵, M.H. Shaevitz^{2,3}, P. Spentzouris³, E.G.Stern², M. Vakili¹, A. Vaitaitis², U.K. Yang⁷, J. Yu^{3*}, G.P. Zeller⁵, and E.D. Zimmerman²
- 1. University of Cincinnati, Cincinnati, OH45221, USA
- 2. Columbia University, New York, NY 10027
- 3. Fermi National Accelerator Laboratory, Batavia, IL 60510
- 4. Kansas State University, Manhattan, KS 66506
- 5. Northwestern University, Evanston, IL 60208
- 6. University of Oregon, Eugene, OR 97403
- 7. University of Rochester, Rochester, NY 14627
- 8. University of Pittsburgh, Pittsburgh, PA 15260
- 9. Bucknell University, Lewisburg, PA 17837

*: Current affiliation at University of Texas at Arlington

Aug. 14, 2002

J. Yu: sin²0_w at NuTeV SSI 2002

Electroweak Threory

- Standard Model unifies Weak and EM to SU(2)xU(1) gauge theory
 - Weak neutral current interaction
 - Measured physical parameters related to mixing parameters for the couplings

g' = gtan ?_w, e = gsin ?_w, G_F =
$$\frac{g^2 \sqrt{2}}{8M_W^2}$$
, $\frac{M_W}{M_Z}$ = cos?_w

- Neutrinos in this picture are unique because they only interact through left-handed weak interactions → Probe weak sector only
 - Less complication in some measurements, such as proton structure

$sin^2 \mathbf{q}_W$ and **m**-N scattering

- In the electroweak sector of the Standard Model, it is not known a priori what the mixture of electrically neutral electomagnetic and weak mediator is → This fractional mixture is given by the mixing angle
- Within the on-shell renormalization scheme, $sin^2\theta_W$ is:

$$\sin^2 q_{w}^{On-Shell} = 1 - \frac{M_{W}^2}{M_{Z}^2}$$

- Provides independent measurement of M_W & information to pin down M_{Higgs}
- Comparable size of uncertainty to direct measurements
- Measures light quark couplings → Sensitive to other types (anomalous) of couplings
- In other words, sensitive to physics beyond SM → New vector bosons, compositeness, v-oscillations, etc

Aug. 14, 2002

How do we measure?

- Cross section ratios between NC and CC proportional to $sin^2\theta_W$
- Llewellyn Smith Formula:

$$R^{n(\bar{n})} = \frac{s_{NC}^{n(\bar{n})}}{s_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W} + \frac{5}{9} \sin^{4}?_{W} \left(1 + \frac{s_{CC}^{\bar{n}(n)}}{s_{CC}^{n(\bar{n})}} \right) \right)$$

Some corrections are needed to extract $\sin^2 \theta_w$ from measured ratios (radiative corrections, heavy quark effects, isovector target corrections, HT, R_L)

- Very small cross section → Heavy neutrino target
- $\nu_{\rm e}$ are the killers (CC events look the same as NC events)

Aug. 14, 2002

J. Yu: sin²0_w at NuTeV SSI 2002

How Do We Separate Events?

Event Length

Define an Experimental Length variable

→ Distinguishes CC from NC experimentally in statistical manner

The NuTeV Experiment

• Suggestion by Paschos-Wolfenstein formula by separating v and \overline{v} beams:

$$R^{-} = \frac{s_{NC}^{n} - s_{NC}^{n}}{s_{CC}^{n} - s_{CC}^{n}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W}\right) = \frac{R^{n} - R^{n}}{1 - r}$$

→ Reduce charm CC production error by subtracting sea quark contributions
 → Only valence u, d, and s contributes while sea quark contributions cancel out
 → Massive quark production through Cabbio suppressed d_v quarks only

Smarter beamline → Removes all neutral secondaries to eliminate v_e content

The NuTeV Detector

- Calorimeter
 - 168 FE plates & 690tons
 - 84 Liquid Scintillator
 - 42 Drift chambers interspersed

- Solid Iron Toroid
 - Measures Muon momentum

 $\Delta p/p~10\%$

Continuous test beam for in-situ calibration

J. Yu: sin² θ_w at NuTeV SSI 2002

The NuTeV Detector

A picture from 1998. The detector has been dismantled to make room for other experiments, such as $D\emptyset$

Aug. 14, 2002

J. Yu: sin² θ_{W} at NuTeV SSI 2002

NuTeV Event Selection

- $E_{had} > 20 GeV$
 - To ensure vertex finding efficiency
 - To reduce cosmic ray contamination
- X_{vert} and Y_{vert} within the central 2/3
 - Full hadronic shower and muon containment
 - Further reduce $v_{\rm e}$ contamination
- Longitudinal vertex, Z_{vert}, cut
 - To ensure neutrino induced interaction
 - Better discriminate CC and NC

SSI 2002

Events and Flux After Selection

Remaining number of events: 1.62M ν & 350k ν

Aug. 14, 2002

J. Yu: sin² θ_{W} at NuTeV SSI 2002

NuTeV Event Length Distributions

Energy Dependent Length cut implemented to improve statistics and reduce systematic uncertainties.

Event Contamination and Backgrounds

•SHORT $\mathbf{n_m}$ CC's (20% \mathbf{n} , 10% \mathbf{n}) μ exit and rangeout •SHORT $\mathbf{n_e}$ CC's (5%) $\nu_e N \rightarrow e X$ •Cosmic Rays (0.9%)

•LONG n_NC's (0.7%) hadron shower

punch-through effects

•Hard **m**Brem(0.2%)

 $\text{Deep}\,\mu \text{ events}$

Aug. 14, 2002

Other Detector Effects

Sources of experimental uncertainties kept small, through modeling using ${\bf n}$ and TB data

Effect	Size(d sin ² q _w)	Tools
Z _{vert}	0.001/inch	$\mu^+\mu^-$ events
X _{vert} & Y _{vert}	0.001	МС
Counter Noise	0.00035	TB μ's
Counter Efficiency	0.0002	ν events
Counter active area	0.0025/inch	ν СС, ТВ
Hadron shower length	0.0015/cntr	TB π 's and k's
Energy scale	0.001/1%	ТВ
Muon Energy Deposit	0.004	ν СС
Aug. 14, 2002	J. Yu: sin²θ _w at NuTeV SSI 2002	17

Measurements of **m**_e Flux

- Neutrino events in anti-neutrino running constraint charm and K₁ induced • production (K_{e3}) in the medium energy range (80<E_v<180GeV)
- Shower Shape Analysis can provide direct measurement v_{ρ} events, • though less precise

 N_{meas}/N_{MC} $1.05 \pm 0.03 (n_e) \qquad used for v_e \\ \rightarrow \delta R_v^{exp} \sim 0.0005$ $1.01 \pm 0.04 (\bar{n}_{e})$

Weighted average

- v_{e} from very short events (E_v>180 GeV)
 - Precise measurement of v_{e} flux in the tail region of flux \rightarrow ~35% more $\overline{\mathbf{v}}_{e}$ in $\overline{\mathbf{v}}$ than predicted
 - Had to require (E_{had}<180 GeV) due to ADC saturation

Results in $\sin^2 \theta_w$ shifts by +0.002

Aug. 14, 2002

MC to Relate R_n^{exp} to R^n and $sin^2 q_W$

- Parton Distribution Model
 - − Correct for details of PDF model → Used CCFR data for PDF
 - Model cross over from short v_{μ} CC events

Neutrino xsec vs y at 190 GeV Antineutrino xsec vs y at 190 GeV 324 s=1.219 CFR Data 02 04 05 05 30 3.0 -0 0.4 0.0 C.B <=0.125 <=0.05 \$-0.125 1.00 16 205 0.4 0.8 x-3,175 7.5 -0.175 <-0.225 -0.225 50.5 0.8 0.7 0.7 B.2 0.4 0.5

- Neutrino Fluxes
 - $v_{\mu'}v_{e'} \overline{v}_{\mu'} \overline{v}_{e}$ in the two running modes
 - ν_{e} CC events always look short
- Shower length modeling
 - Correct for short events that look long
- Detector response vs energy, position, and time
 - Continuous testbeam running minimizes systematics

Aug. 14, 2002

J. Yu: sin²0_w at NuTeV SSI 2002 10000

6000 6000

4000 2000

4000

3500 3000

2500

2000 1500

1000 500 0

0

100

Neutrino Mode

Antineutrino Mode

150

 $\chi^2/dof = 117.2/126$

200

 χ^2 /dof = 88.9/125

untuned MC

upad MC

250

E, (GeV)

250

E, (GeV)

300

300

R^{exp} Stability Check

- Crucial to verify the R_v^{exp} comparison to MC is consistent under changes in cuts and event variables
 - Longitudinal vertex

 Detector uniformity
 - Length cut \rightarrow Check CC to NC cross over
 - Transverse vertex background at the detector edge
 - Visible energy $(E_{Had}) \rightarrow Checks$ detector energy scale and other factors

 1σ uncertainty.

SSI 2002

Data/MC ratio

$sin^2 {\bm q}_W$ Fit to ${\bm R}_{\bm n}^{\ exp}$ and ${\bm R}_{\cdot {\bm n}}^{\ exp}$

- Thanks to the separate beam \rightarrow Measure R^v's separately
- Use MC to simultaneously fit \mathbf{R}_{n}^{exp} and $\mathbf{R}_{\overline{n}}^{exp}$ to $\sin^2\theta_{W}$ and \mathbf{m}_{c} , and $\sin^2\theta_{W}$ and ρ

$$R^{n(\bar{n})} = \frac{s_{NC}^{n(\bar{n})}}{s_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W} + \frac{5}{9} \sin^{4}?_{W} \left(1 + \frac{s_{CC}^{\bar{n}(n)}}{s_{CC}^{n(\bar{n})}} \right) \right)$$

- R^v Sensitive to $\sin^2\theta_w$ while R \overline{v} isn't, so R^v is used to extract $\sin^2\theta_w$ and R \overline{v} to control systematics
- Single parameter fit, using SM values for EW parameters ($\rho_0=1$)

$$sin^{2}?_{W} = 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)}$$

$$m_{c} = 1.32 \pm 0.09 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ w/m}_{c} = 1.38 \pm 0.14 \text{ GeV/c}^{2} \text{ as input}$$
•Two parameter fit for sin² θ_{W} and ρ_{0} yields
$$sin^{2}?_{W} = 0.2265 \pm 0.003$$

$$r_{0} = 0.9983 \pm 0.040$$
Aug. 14, 2002
SI 2002
SI 2002

NuTeV sin²q_W Uncertainties

Source of Uncertainty	$\mathbf{d} \sin^2 \mathbf{q}_{W}$	Dominant	
Statistical	0.00135	uncertainty	
${oldsymbol{ u}}_{e}$ flux	0.00039		
Event Length	0.00046		
Energy Measurements	0.00018	1-Loop Electroweak Radiative Corrections based on Bardin, Dokuchaeva JINR-E2-86-2 60 (1986)	
Total Experimental Systematics	0.00063		
CC Charm production, sea quarks	0.00047		
Higher Twist	0.00014		
Non-isoscalar target	0.00005	dsin ² ? _W ^(On-shell) = -0.00022 × $\left(\frac{M_t^2 - (175 \text{GeV})^2}{(175 \text{GeV})^2}\right)$	
$s^{\overline{n}}/s^{\overline{n}}$	0.00022	$((50 \text{GeV})^2)$	
RadiativeCorrection	0.00011	$+0.00032 \times \ln \left(\frac{M_{H}}{1500 \text{ sV}} \right)$	
R _L	0.00032	(ISUGEV)	
Total Physics Model Systmatics	0.00064		
Total Systematic Uncertainty	0.00162		
D M _w (GeV/c ²)	0.08		
Aug. 14, 2002	J. Yu: sin² 0 _w at Nu SSI 2002	TeV 22	

NuTeV vs CCFR Uncertainty Comparisons

Aug. 14, 2002

J. Yu: sin²0_w at NuTeV SSI 2002

The NuTeV sin²q_w

$$\frac{\sin^{2} ?_{W}^{\text{On} - \text{Shell}}}{\sin^{2} ?_{W}^{\text{On} - \text{Shell}}} = 0.2277 \pm 0.0013 \quad (\text{stat}) \pm 0.0009 \quad (\text{syst})$$
$$\frac{\sin^{2} ?_{W}^{\text{On} - \text{shell}}}{M_{Z}^{2}} = 1 - \frac{M_{Z}^{2}}{M_{Z}^{2}}$$
$$\Rightarrow M_{W}^{\text{On} - \text{Shell}} = 80.14 \pm 0.08 \quad \text{GeV/c}^{2}$$

Comparable precision but value smaller than other measurements W-Boson Mass [GeV]

24

Tree-level Parameters: \mathbf{r}_{0} and $\sin^{2}\mathbf{q}_{W}^{(\text{on-shell})}$

- Either sin² $\theta_{W}^{(on-shell)}$ or ρ_{0} could agree with SM but both agreeing simultaneously is unlikely

Aug. 14, 2002

J. Yu: sin²0_w at NuTeV SSI 2002

Model Independent Analysis

- Performed the fit to quark couplings (and g_L and g_R)
 - For isoscalar target, the νN couplings are

$$g_{L}^{2} = u_{L}^{2} + d_{L}^{2} = ?_{0}^{2} \left(\frac{1}{2} + \sin^{2} ?_{W} + \frac{5}{9} \sin^{4} ?_{W} \right)$$
$$g_{R}^{2} = u_{R}^{2} + d_{R}^{2} = ?_{0}^{2} \frac{5}{9} \sin^{4} ?_{W}$$

- From two parameter fit to R_n^{exp} and $R_{\overline{n}}^{exp}$

$$g_{L}^{2} = 0.3005 \pm 0.0014 \quad (SM: 0.3042 \leftarrow -2.6\sigma \text{ deviation})$$

$$g_{R}^{2} = 0.0310 \pm 0.0011 \quad (SM: 0.0301 \leftarrow \text{Agreement})$$

Difficult to explain the disagreement with SM by: Parton Distribution Function or LO vs NLO or Electroweak Radiative Correction: large M_{Higgs}

What is the discrepancy due to (Old Physics)?

- R^{-} technique is sensitive to q vs \overline{q} differences and NLO effect
 - Difference in valence quark and anti-quark momentum fraction
- Isospin spin symmetry assumption might not be entirely correct
 - Expect violation about 1% → NuTeV reduces this effect by using the ratio of v and v cross sections → Reducing dependence by a factor of 3
- s vs s quark asymmetry
 - s and \overline{s} needs to be the same but the momentum could differ
 - A value of Δs=s s ~+0.002 could shift sin²θ_W by -0.0026, explaining ½ the discrepancy (S. Davison, et. al., hep-ph/0112302)
 - NuTeV di- μ measurement shows that $\Delta s{<<}0.002$
- NLO and PDF effects
 - PDF, m_c, Higher Twist effect, etc, are small changes
- Heavy vs light target PDF effect (Kovalenko et al., hep-ph/0207158)
 - Using PDF from light target on Iron target could make up the difference
 - → NuTeV result uses PDF extracted from CCFR (the same target)

What other explanations (New Physics)?

- Heavy non-SM vector boson exchange: Z', LQ, etc
 - LL coupling enhanced than LR needed for NuTeV
- Propagator and coupling corrections
 - Small compared to the effect

- MSSM : Loop corrections wrong sign and small for the effect
- Gauge boson interactions
 - Allow generic couplings \rightarrow Extra Z' bosons???
 - LEP and SLAC results says < 10⁻³
- Many other attempts in progress but so far nothing seems to explain the NuTeV results
 - Lepto-quarks
 - Contact interactions with LL coupling (NuTeV wants m_{z'}~1.2TeV, CDF/D0: m_{z'}>700GeV)
 - Almost sequential Z' with opposite coupling to ν

Langacker *et al*, Rev. Mod. Phys. **64** 87; Cho *et al.*, Nucl. Phys. **B531**, 65; Zppenfeld and Cheung, hep-ph/9810277; Davidson et al., hep-ph/0112302

Aug. 14, 2002

J. Yu: sin² θ_{W} at NuTeV SSI 2002

Future???

Muon storage ring can generate 10^6 times higher flux and well understood, high purity neutrino beam \rightarrow significant reduction in statistical uncertainty

But $\nu_{\rm e}$ and ν_{μ} from muon decays are in the beam at all times

→ Deadly for traditional heavy target detectors

Muon Storage Ring as a Neutrino Source

Conclusions

• NuTeV has measured $\sin^2 \theta_w$:

 $sin^{2}?_{w}^{On-shell} = 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)}$

$$\Rightarrow$$
 M_w^{On-Shell} = 80.14 ± 0.08GeV/c⁻²

- NuTeV result deviates from SM prediction by about $+3\sigma$ (PRL 88, 091802, 2002)
- Interpretations of this result implicates lower left-hand coupling (-2.6σ) but good agreement in right-hand coupling with SM
- NuTeV discrepancy has generated a lot of interest in the community
 - Still could be a large statistical fluctuation (5 σ has happened before)
 - Yet, many interpretations are being generated:
 - Some could explain partially but not all
 - Asymmetric s-quark sea
 - Additional mediator, extra U(1) vector bosons, etc
 - No single one can explain the discrepancy \rightarrow it still is a puzzle...
- Could this be a signature of new physics?
 - No other current experiment is equipped to redo this measurement
 - Muon storage ring seems to provide a promising future...

Aug. 14, 2002

J. Yu: sin² θ_w at NuTeV SSI 2002