Recent Results from CLEO

SLAC Summer Institute Topical Conference

Eckhard von Toerne Kansas State University

EVT@PHYS.KSU.EDU

Outline

* CLEO at CESR

- * V_{cb} and V_{ub} from Semi-Leptonic B decays
- * Rare B decays $B \rightarrow K\pi\pi$, etc.
- * Hadronic B decays
- * CLEO-III Results from the Y(3S)
- * CLEO-c Outlook

The Experiment

- * CESR = Cornell Electron Positron Storage Ring
- * Symmetric e⁺e⁻ collider (e⁻ and e⁺ have equal energy and opposite momentum)
- * Luminosity ~ 10³³ cm⁻² sec⁻¹ (1 B-pair per second)

* Υ (4s), first bb resonance above B-pair threshold

				$\sim 2^{5}$
Detector	$\Upsilon(4S)$	Cont.	$B\bar{B}$	τ΄ Υ(1S)
	fb^{-1}	$\rm fb^{-1}$	(10^{6})	<u>و</u> 20 Y Resonance region
CLEO II	3.1	1.6	3.3	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$
CLEO II.V	6.0	2.8	6.4	Ϋ́(2S)
Subtotal	9.1	4.4	9.7	μ 10 Υ(3S)
CLEO III	6.9	2.3	7.4	τ υ 5 Υ(4S)
Total	16.0	6.7	17.1	**************************************
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 9.44 9.46 10.0010.02 10.34 10.37 10.54 10.58 10.62
				Mass (GeV/c ²)

The CLEO III Detector

Measuring CKM in B Decays

- * Two approaches: inclusive + exclusive
- * Experimental issues: Lepton rates & spectra, exclusive branching fractions, full B meson reconstruction
- * Theoretical Issues: Prediction of lepton spectra, quark-hadron duality, form factors, heavy quark expansion of inclusive semileptonic width

Semileptonic Decay Width $\Gamma(B \rightarrow X_c l^+ V)$

 $\Gamma_{SL}^{c} = \frac{G_{F}^{2} |V_{cb}|^{2} M_{B}^{5}}{192\pi^{3}} \left[G_{0} + \frac{1}{M_{B}} G_{1}(\bar{\Lambda}) + \frac{1}{M_{B}^{2}} G_{2}(\bar{\Lambda}, \lambda_{1}, \lambda_{2}) + O(\frac{1}{M_{B}^{3}}) \right] \frac{Heavy Quark}{Expansion}$

 $\Gamma_{SL}^{c, exp} = (0.43 \pm 0.01) \times 10^{-10} \text{ MeV}$

World average in hep-ph/0205163

- •Nonperturbative QCD parameters
- $\bar{\Lambda}$ (b-quark pole mass shift) $b \to s \gamma$
- λ_1 (b quark kinetic energy) M_{had} in $B \rightarrow X_c l^+ V$
- λ_2 (HQ spin symmetry breaking) **B*-B mass splitting** All inclusive semileptonic quantities Can be expanded in $\overline{\Lambda}$, λ_1 , λ_2

Moment Analysis

Truncated Lepton Spectrum in $B \rightarrow X_c l^+ V$

Good agreement between muon/electron spectra !

Moments from Lepton Spectrum in $B \rightarrow X_c l^+ V$

L and I₁ ellipse extracted from 1st

moment of $B \longrightarrow X_s \gamma$ photon energy spectrum and 1st moment of hadronic

mass² distribution($\mathbf{B} \rightarrow X_c / {}^+V$). We use the HQET equations in MS scheme at order $1/M_B{}^3$ and $\alpha_s{}^2 \beta_o$.

MS Expressions: A. Falk, M. Luke, M. Savage, Z. Ligeti, A. Manohar, M. Wise, C. Bauer The red and black curves are derived

from the new CLEO results for ${f B}$ ightarrow

 X_c/V lepton energy moments.

MS Expressions: M.Gremm, A. Kapustin, Z. Ligeti and M. Wise, I. Stewart (moments) and I. Bigi, N.Uraltsev, A. Vainshtein(width)

Gray band represents total uncertainty for the 2^{nd} moment of photon energy spectrum.

V_{cb} from Lepton Energy Spectrum

 $\bar{\Lambda} = 0.39 \pm 0.03 \pm 0.06 \pm 0.12 \text{ GeV} \\ stat sys theory \\ \lambda_1 = -0.25 \pm 0.02 \pm 0.05 \pm 0.14 \text{ GeV}^2 \\ stat sys theory \\ \end{tabular}$

V_{cb} with all moments considered:

 $|V_{cb}| =$ (40.8±0.5±0.4±0.9)*10⁻³ $\Gamma sl \bar{\Lambda}, \lambda_1$ theory

preliminary

V_{cb} from zero recoil in $\overline{B} \to D^* l^- \overline{V}$

* F(1) |V_{cb}| (intercept)
* ρ² (slope)
* Uses formfactor F(W)|_{W=1} of 0.91±0.04
* W=1 corresponds to D* at rest in B rest frame

V_{ub} Lepton Yields

V_{ub} from BR(B⁰ $\rightarrow \pi^{-}l^{+}V)$

CLEO III Rare Hadronic B Results

Rare B Branching Fraction Results

Mode	Efficiency	Yield	Significance	$B(10^{-6})$	UL (10^{-6})	
$K^{\pm}\pi^{\mp}$	46%	$29.2^{+7.1}_{-6.4}$	5.4σ	$18.6^{+4.5}_{-4.1}{}^{+3.0}_{-3.4}$		CLEO III (prelim.)
	45%	$80.2^{+11.8}_{-11.0}$	11.70	$18.8^{+2.8}_{-2.6}\pm1.3$		CLEO II+ II V
$K^{\pm}\pi^{0}$	32%	$12.9^{+6.5}_{-5.5}$	3.8σ	$13.1^{+5.8}_{-4.9}^{+2.8}_{-2.9}$		
	38%	$44.9^{+11.3}_{-10.3}$	8.UU	$12.1 \pm 3.0 \pm 2.1$ $12.1 \pm 2.8 \pm 1.4$		
$K^0\pi^{\pm}$	12%	$14.8^{+4.9}_{-4.1}$	6.2σ	$35.7^{+12}_{-9.9}{}^{+5.4}_{-6.2}$		
	14%	25.2 ± 6.4 ± 5.6	7.6σ	$18.2^{\pm4.6}_{-4.0}\pm1.6$		CI FO III (\sim 3fb ⁻¹)
$K^0\pi^0$	8.5%	$3.0^{+2.9}_{-2.5}$	1.6σ	$10.4^{+10}_{-8.3}{}^{+2.9}_{-2.9}$	72	
	11%	15.9 15.5 —5.0	4.7σ	$14.0 \pm 5.0 \pm 2.4$ $14.0 \pm 5.1 \pm 3.3$		confirms prev. CLEO
$\pi \pm \pi \mp$	35%	$3.9^{+1.5}_{-1.2}$	2.2σ	$3.2^{+3.3}_{-2.5}^{+1.0}_{-1.0}$	11	results.
	45%	$20.0^{+7.6}_{-6.5}$	4.20	$4.7^{\pm 1.8}_{-1.5} \pm 0.6$		D 1/ 111
$\pi^{\pm}\pi^{0}$	29%	$11.5^{+5.6}_{-4.5}$	3.4σ	$11.7^{+5.7}_{-4.6}{}^{+2.2}_{-2.4}$	25	Results will be
	41%	23.1 ± 0.1 23.1 ± 0.7	3.2σ	$5.6^{\pm 2.6}_{- 2.3} ^{\pm 1.7}_{- 1.7}$	12	published based on
$\pi^{0}\pi^{0}$	29%	$2.7^{+2.4}_{-1.6}$	2.9σ		11	$\int d\mathbf{r} = 1$ (or recommonly)
	29%	$6.2^{\pm 4.8}_{- 3.7}$	2.0σ		5.7	\sim ord \sim (on-resonance)
$K^{\pm}K^{\mp}$	36%	$1.0^{+2.4}_{-1.7}$	0.6σ		4.5	in late Summer.
	4 5%	$0.0^{\pm 3.4}_{\pm 0.0}$	0.0σ		2	
K^0K^{\pm}	12%	$0.5^{+1.9}_{-1.1}$	0.8σ		18	
	14%	1.4 - 1.8			5.1	(Upper Limits are
$K^0 \overline{K^0}$	13%	$0.0^{+0.5}_{-0.5}$			13	(Opper Linnis are
	19%	$1.0^{+1.9}_{-1.0}$			6.1	90% C.L.)

 $B \rightarrow K_s^0 \pi^+\pi^-$ and $B \rightarrow K^{*+}\pi^-$

Eckhard von Toerne

* CLEO II + II.5 Data Sample (9.7 M B-pairs)

* D \rightarrow K π , D \rightarrow $\pi\pi$ veto

- * ML fit with several Dalitz amplitudes
- * Substructure $B \rightarrow K^{*+}\pi^{-}$ observed

Br(B
$$\rightarrow$$
 K_s $\pi^{+}\pi^{-}$) = (50 $^{+10}_{-9} \pm 7$) x10⁻⁶

Br(B
$$\rightarrow$$
 K^{*+} π^{-}) = (16 $^{+6}_{-5} \pm 2$) ×10⁻⁶

hep-ex/0206024, subm. to PRL

Color-Suppressed B decays

* Internal spectator diagram is color-suppressed

- * Until 2001, only color-suppressed decays into charmonium states had been observed.
- * First Observations of $\overline{B}^0 \rightarrow D^{(*)0}\pi^0$ were recently published by CLEO, Phys.Rev.Lett.88 062001 (2002) Belle, Phys.Rev.Lett.88 052002 (2002) (preliminary BaBar results at ICHEP'02)

Hadronic Decay $\overline{\mathbf{B}}^{0} \rightarrow D^{(*)0} \pi^{0}$

$B \rightarrow D\pi$ Amplitude Triangles

- * BR($\overline{B}^0 \rightarrow D^0 \pi^0$) completes $B \rightarrow D\pi$ system
- * Measurement of relative phase between isospin amplitudes I =1/2, 3/2 possible. A($\overline{D}^0\pi^+$) = A($D^-\pi^+$) + $\sqrt{2}$ A($\overline{D}^0\pi^0$)

Branching Fractions (10^{-4}) BR($\bar{B}^0 \rightarrow D^0 \pi^0$) = 2.7±0.3±0.6±0.1 BR($B^+ \rightarrow D^0 \pi^+$) = 49.7±1.2±2.9±2.2 BR($\bar{B}^0 \rightarrow D^- \pi^+$) = 26.8±1.2±2.4±1.2

With the new CLEO B \rightarrow D π and CLEO+Belle BR(B⁰ \rightarrow D⁰ π ⁰) we obtain $\cos \delta_{\rm I} = 0.863 + 0.024 + 0.036 + 0.038 + 0.038 + 0.023 - 0.035 - 0.030$

A non-zero phase, $\cos \delta_I \neq 1$, would indicate **Final State Interactions**

 $\begin{array}{c|c} A(\overline{\mathbf{D}}^{0}\pi^{+}) \\ \hline A(\overline{\mathbf{D}}^{0}\pi^{0}) & \star \sqrt{2} \\ \hline A(\mathbf{D}^{-}\pi^{+}) \end{array}$

New CLEO II+II.V Results hep-ex/0206030, accepted by PRD

$B \rightarrow \Lambda_c \bar{p} n(\pi), n=0,1,2,3$

- * Enough phase space available for baryonic B decays
- * B $\rightarrow \Lambda_{\rm C}$ inclusive rate ~6%
- * No two-body decays known \rightarrow multi-body decays dominate

B to Λ_c \bar{p} n(π), n=0,1,2,3

Upsilon Spectroscopy

*CLEO left the $\Upsilon(4S)$ in Summer 2001 and collected data on $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

Resonance	1S	2S	3S	
Int. Lumi. (pb ⁻¹)	1500	700	1400	(47*10 ⁶ Evts)

*3 - 10 times the previous world data set + higher efficiency *Discovery of new states possible $(\eta_{b'}, h_b \text{ and } 1^3 D_J)$ *Test of lattice QCD

Two-Photon transitions from the $\Upsilon(3S)$

Two-Photon transitions from the $\Upsilon(3S)$

* Limits on hadronic transitions $BR(\Upsilon(3s) \rightarrow \pi^{0}\Upsilon(1S)) < 0.17 \times 10^{-3}$ $BR(\Upsilon(3s) \rightarrow \pi^{0}\Upsilon(2S)) < 1.2 \times 10^{-3}$ $BR(\Upsilon(3s) \rightarrow \eta\Upsilon(1S)) < 0.90 \times 10^{-3}$

* Γ_{had} ratios $\frac{\Gamma_{had}(2P_{Ja})}{\Gamma_{had}(2P_{Jb})} = \left(\frac{E_{\gamma}(2P_{Ja} \to 2S)}{E_{\gamma}(2P_{Jb} \to 2S)}\right)^3 \frac{1/\mathcal{B}(2P_{Ja} \to \gamma 2S) - 1}{1/\mathcal{B}(2P_{Jb} \to \gamma 2S) - 1}$

 $\Gamma_{had}(\chi_{b0}(2P))/\Gamma_{had}(\chi_{b2}(2P)) = 2.4 \pm 1.0 \text{ (PQCD: 3.75)}$ $\Gamma_{had}(b1) / \Gamma_{had}(b2) = 0.29 \pm 0.06$ (as expected, J=1 state decay to two hard gluons is suppressed)

* Exact Calibration of γ Cascades

* Study of backgrounds for multi-γ cascades

Search for the η_b in $\Upsilon(3S) \rightarrow \eta_b \gamma$

* No signal observed Hyperfine Splitting: $M_{Y(1S)} - M_{\eta b(1S)} (MeV/c^2)$ 130 70 110 30 50 90 3 * BR Limits as a Zambetakis, Byers'83 function of $M(\eta_{\rm h})$ Branching Ratio in units of 10⁻³ Godfrey-Isgur'85 B Models from the compilation by Godfrey-Isgur'85 A Godfrey&Rosner PRD64, 074011 (2001) 90% CL UL CLEO-III (scaled here by the phase-space) Lahde, Nyfalt, Riska'99 A 0 880 900 920 940 960 980 1000 Eγ (MeV)

$\Upsilon(3S) \rightarrow \Upsilon(1S)$ 4-photon cascades

$r(3S) \rightarrow r(1S) + 4\gamma$ $\mu^+\mu^-$

Discovery of the $\Upsilon(1D)$

Discovery of the $\Upsilon(1D)$, Mass Fits

Recent Charm Results

* Charm

- D⁰ → K_s⁰ $\pi^+ \pi^-$ CLNS 02/1792 $\Omega_c^0 \rightarrow \Omega^- e^+ \nu_e$ CLNS 02/1782 D⁺ → K^{*0} $l^+ \nu_l$ CLNS 02/1776 (See also I an Shipsey's Lecture)
- * Many CLEO contributions to $\gamma\gamma$ and τ physics

	Sec.	
	100	
	<u> </u>	1
	<u> </u>	10.00
Sec.	100	and a
1000	-	W.
	140	24
		100

Outlook: The CLEO-c Program

2

()

()

3

2

0

0

4

2

 \mathbf{O}

5

Prologue: Upsilons ~1-1.5 fb⁻¹ each $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$... Spectroscopy, Matrix Elements Γ_{ee} , 10-15 times existing world's data Prenete Prenet Prenete Prenete Prenete Prenete Pre

Act I: ψ(3770) -- 3 fb⁻¹ 30M events, 6M *tagged* D decays (310 times MARK III)

Act II: "s ~ 4100 -- 3 fb⁻¹ 1.5M D_sD_s, 0.3M *tagged* D_s decays (480 times MARK III, 130 times BES II)

Act III: ψ(3100) -- 1 fb⁻¹ 1 Billion J/ψ decays (170 times MARK III, 20 times BES II)

Why charm threshold?

 $\square^0 \rightarrow \kappa^- \pi^+$

ECKHAIU VOIL LOEIHE

Absolute D Branching Ratios

τν mode to be studied soon

- * Searches for QCD Hybrids and Glueballs
- * Precision Tests of Lattice QCD Predictions
 - * bb Spectroscopy
 - * Charm Meson Formfactors
- * Search for New Physics
- * Charm Spectroscopy
- * R Measurements Improved Input to Electroweak fits
- * Rare Light Meson Decay Modes in two-body J/ψ decays

Summary

- * CLEO contributes significantly to Heavy Flavor Physics
- * No time to mention important Charm/tau results from CLEO
- * After more than 20 years of data taking, CLEO finished operation at the Υ(4s)
- * bb Resonance scan underway, preliminary results presented here
- * CLEO-c will explore Charm region in 2003+

B Meson Decays at CLEO

B mesons decay weakly, lifetime ~pico seconds, $C\tau$ <1mm

- * CLEO investigates $e^{+}e^{-} \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ and the weak decays of B mesons
- * B mesons are produced almost at rest → no time-dependent CP measurements (time-integrated CP measurements possible)

Example of B decay processes

Eckhard von Toerne

$B \rightarrow X_u l^+ V$ with Neutrino Reconstruction

Neutrino four momentum inferred from missing momentum. Requires good solid angle coverage!

Maximum likelihood fit over full three dimensional decay distribution

Contributions from $\mathbf{B} \rightarrow \mathbf{X}_{c} \mathbf{l}^{+} \mathbf{V}$ (D, D^{*}, D^{*} and NR) and $\mathbf{B} \rightarrow \mathbf{X}_{u} \mathbf{l}^{+} \mathbf{V}$. $V_{ub} = (4.05 \pm 0.18 \pm 0.58 \pm 0.25 \pm 0.21 \pm 0.56) \ 10^{-3}$ model stat syst theory →U Events/(.1 CosT) Events/(GeV²⁾ **b**→u Events/(.5 GeV Backgrounds ■ b→u Backgrounds ■ b→u Backgrounds l ⊠ b→c 600 600 Cosθ_{wl} 800 500 500 Q²<11 GeV² M_{x}^{2} < 2.25 GeV² 600 400 400 300 300 400 200 200 200 100 100 0 ⊾ -2 ⁰ -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 12 14 16 18 20 22 24 26 28 30 -1 0 2 3 1 Cos M_x^2 GeV² GeV²