Heavy Quark Physics at HERA

Felix Sefkow University of Zürich / DESY

Probing QCD with Charm and Beauty

Heavy quark production in ep collisions

Outline of this talk:

- Open charm fragmentation,
 - Charmonium $(c\bar{c})$ production
- Charm and proton structure
- Beauty and charm hard production dynamics

Open charm: secondary vertex tagging

$D^+,\,D^0,\,D_s^+,\,D^{*+}$ production ratios

- D^+ signal before and after decay length cuts \rightarrow
- $\begin{array}{ll} & {\color{red} \text{Isospin ratio}} \ R_{u/d} \\ & 1.28 \pm 0.19 \pm 0.12 & \text{H1} \\ & 1.02 \pm 0.12 & \text{ALEPH} \\ & 0.96 \pm 0.05 \pm 0.07 & \text{DELPHI} \end{array}$
- Vector : (Pseudoscalar +V) P_{Vd}

 $\begin{array}{ll} 0.693 \pm 0.045 \pm 0.013 & {\mbox{H1}} \\ 0.546 \pm 0.045 \pm 0.028 & {\mbox{ZEUS}} \\ 0.595 \pm 0.045 & {\mbox{ALEPH}} \\ 0.57 \pm 0.05 \pm 0.07 & {\mbox{OPAL}} \end{array}$

$c \rightarrow D^{*+}$ fragmentation function

• $ep \to cX$: $z = (E + p_{||})_D / (E + p_{||})_{jet}$

- similar accuracy, similar shape
- Fit LO parton shower MC with Peterson fragmentation function: $\epsilon_c = 0.064 \pm 0.006 \stackrel{+0.011}{-0.008}$
- compares well with leading log analyses of ARGUS and OPAL data (e.g. Nason *et al*)

Fragmentation:

- Fractions of ground state (and excited) D meson species and
- the first fragmentation function measurement in ep collisions

support universality of the heavy quark to hadron transition.

J/Ψ production

- J/Ψ is colorless
 - Color singlet model hard process \rightarrow [1]

- NRQCD: Color octet states soft [8] \rightarrow [1] transition

• CO long distance matrix elements from fit of LO QCD to $\bar{p}p$ data

 non-perturbative, phenomenological, but universal

J/Ψ in Deep Inelastic Scattering

J/Ψ photoproduction

- limit Q² → 0: photoproduction
 resolved photon contributions: qq̄ fluctuation, hadronic interaction; CO important
- mostly at low $z = \frac{E_{\Psi}}{E_{\gamma}}$ (in p CMS)

- for direct γ process (medium z region) full NLO ($O(\alpha_s^3)$), colour singlet only
- doing well
 - without octet

Charmonium production:

- NRQCD including color octet contributions provides a reasonable description of J/Ψ production in $\bar{p}p$, ep, γp (and $\gamma \gamma$) collisions
 - but with large theoretical uncertainties
- NLO corrections are important
 - and may change the picture

Proton structure

 Q^2 : 4-momentum transfer x_{Bj} : momentum fraction of struck quark

• structure function F_2

$$\frac{d^2\sigma}{dx\,dQ^2} \approx \left(\frac{d^2\sigma}{dx\,dQ^2}\right)_{point} \cdot F_2(x,Q^2)$$
$$F_2(x,Q^2) = \sum_i e_i^2 q_i(x,Q^2)$$
scaling violations: gluons

Parton distributions

 From Altarelli Parisi NLO QCD fit to scaling violations

• gluon density high: charm contrib. to DIS <u>large</u>: $\sim 25\%$

• Verify factorization with charm production: $\gamma g \rightarrow c \overline{c}$

• NB: not shown here: with higher precision some imperfections show up

Hard diffractive scattering

 colorless exchange: diffraction

- proton stays intact: hadronic interaction, confinement
- jets: partonic interaction, perturbative QCD

 factorizable: diffractive structure functions and pdf's

Diffractive pdf's and charm

• $\sim 75\%$ gluons in diffractive exchange

 predict diffract. charm prod. using new diffractive pdf's

- link to ordinary partons
- apply to diffraction in $\bar{p}p$

Proton structure and charm:

- Charm contribution to inclusive DIS is large and important to understand the proton
- Charm is directly sensitive to gluons

HERA results support factorization in deep inelastic scattering (and in hard diffraction).

Beauty cross sections, elsewhere

 $p\bar{p} \rightarrow bX$, $\sqrt{s}=1.8 \text{ TeV}$, $|y^b| < 1$

• LEP $\gamma\gamma$

• *ep*: cleanest case

Hard QCD studies with charm and beauty

- beauty : charm : uds \approx 1 : 100 : 1000
- photoproduction dominates
- steeply falling p_T

• beauty: semileptonic decays

Beauty signatures

• p_T relative to jet axis

• lepton impact parameter

ZEUS

example: ZEUS DIS data

example: H1 photoproduction data

Beauty cross section at HERA

Beauty spectra

• in DIS

New results – no striking disagreement in shapes

in photoproduction

ZEUS ZEUS dơ/dQ² (pb/GeV²) dơ/dp^μ (pb/GeV) $\sigma(e^+p \rightarrow e^+ b\bar{b} X \rightarrow e^+ \mu^{\pm} \text{Jet } X)$ $\frac{d\sigma}{dp_{T}^{\mu}}$ (ep \rightarrow b $\overline{b}\rightarrow$ e jj μ X) $Q^{2} < 1 \text{ GeV}^{2}$ 0.2<y<0.8 ZEUS (prel.) 99-00 **p**_T^{j1,j2}>7,6 GeV |η^j|<2.5 NLO QCD (HVQDIS) **-1.6**<η^μ<**2.3** 4.5 < m_b < 5.0 GeV $1/4(Q^2+4m_b^2) < \mu^2 < 4(Q^2+4m_b^2)$ ZEUS (prel.) 96-00 10 NLO QCD x hadr. NLO QCD 0.05 < y < 0.7 $P_{...} > 2 \text{ GeV}, 30^{\circ} < \theta_{\mu} < 160^{\circ}$ 10 $E_{t,Jet}^{Breit} > 6 \text{ GeV}, -2 < \eta_{Jet}^{Lab} < 2.5$ -2 10 1 10 10³ Q² (GeV²) 10² 10 3 5 6 7 8 $\begin{array}{cc} 9 & 10 \\ p_T^\mu \, (\text{GeV}) \end{array}$ 4

Direct and resolved photoproduction

• in dijet events: reconstruct momentum fraction x_{γ} of parton entering from the photon side

 similar behavior seen earlier for charm

$D^{*\pm}$ photoproduction

- new, precise data, improved theory
- not everywhere compatible,

some excess

QCD calculations (Frixione, Nason *et al*): NLO: 3 flavour $O(\alpha_s^2)$ FONLL: NLO merged with 4 flavour resummed

Resolved photon processes

Angular distributions in the parton CMS

•
$$\cos \theta^* = \tanh((\eta_{jet 1} - \eta_{jet 2})/2)$$

ZEUS

- resolved steeper: gluon propagator
- charm in photon direction: excitation topology
- also compatible: CASCADE
 k_T dependent
 "unintegrated" gluon

Double heavy flavour tags

- rare objects still
- but directly sensitive to higher order QCD effects
- with low p_T threshold: confirm b cross section measurements

 separate charm and beauty by charge and hemisphere correlation

QCD with beauty and charm:

- Charm photoproduction not everywhere compatible with NLO QCD
- Correlation studies identify important topologies in hadronic photon interactions
- Beauty photoproduction is higher than expected like in $\bar{p}p$ and $\gamma\gamma$ interactions
- Measurements call for more data...

Outlook

With luminosity and detctor upgrades succesfully completed

unveil Hera's secret beauty