Road to the discovery of Large CP Violation

A.I. Sanda

Nagoya University

Discoveries before 1980

■ 1962 Two neutrinos with mass and mixing

- 1964 CP Violation in $K \rightarrow \pi^{+} \pi^{-}$
- 1973 KM model
- $1974 \mathrm{~J} / \psi$

■ 1975 Charm particles

- 1976 Y(1S)
- 1980 Prediction of large CPV in B decays

1962 Discovery of mixing angles for two neutrinos

Without knowing about the experimental discovery of ν_{μ} Maki, Sakata, and Nakagawa stated

$$
\begin{aligned}
& v_{1}=v_{e} \cos \delta+v_{\mu} \sin \delta \\
& v_{2}=-v_{e} \sin \delta+v_{\mu} \cos \delta
\end{aligned}
$$

Prog. Theoretical Physics 28 870, (1962)
before Cabibbo introduces the mixing angle for quarks

Lederman's shoulder

1970 Columbia
$p+U \rightarrow \mu^{+} \mu^{-}+$anything

1975 Discovery of D^{0} and D^{+}

This discovery was before G. Goldhaber et.al PRL 37, 255(1976)

Niu et. al. $14^{\text {th }}$ Int. Cosmic Ray Conf. (Munich), 7, 2442 (1975) Nagoya Discovery

Start of B physics

- Theorists discussed B mesons since 1976
- Ellis Gaillard Nanopoulos Rudaz 1977
- Bander Silverman Soni 1979
- Cater AIS 1980
- Discovery of Y(4S) Phys. Rev. Lett. $45,219-22($ (I980)

Pais Seminar

Pais-Treiman paper

CP Violation in Charmed Particles Phys.Rev.D12:2744-2750,1975

There is good news and bad news:
OGood news is that there is CP violation in heavy meson decays
Bad news is that it is very small
They considered wrong asymmetries

Generalization of K decays

$$
\frac{\Gamma\left(K_{L} \rightarrow l^{+} v_{l} \pi^{-}\right)-\Gamma\left(K_{L} \rightarrow l^{-} \bar{v}_{l} \pi^{+}\right)}{\Gamma\left(K_{L} \rightarrow l^{+} v_{l} \pi^{-}\right)+\Gamma\left(K_{L} \rightarrow l^{-} \bar{v}_{l} \pi^{+}\right)}=\frac{\left|p_{K}\right|^{2}-\left|q_{K}\right|^{2}}{\left|p_{K}\right|^{2}+\left|q_{K}\right|^{2}}
$$

$$
\frac{\Gamma\left(\bar{B}^{0} \rightarrow l^{+} \bar{X}\right)-\Gamma\left(B^{0} \rightarrow l^{-} X\right)}{\Gamma\left(\bar{B}^{0} \rightarrow l^{+} \bar{X}\right)+\Gamma\left(B^{0} \rightarrow l^{-} X\right)}=\frac{\left|p_{B}\right|^{2}-\left|q_{B}\right|^{2}}{\left|p_{B}\right|^{2}+\left|q_{B}\right|^{2}}
$$

$$
\approx \frac{2 \operatorname{Re} \varepsilon}{1+|\varepsilon|^{2}}
$$

$$
\begin{aligned}
& \left|B_{1}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{2}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{1+\varepsilon}{\sqrt{1+|\varepsilon|^{2}}} \\
& q=\frac{1-\varepsilon}{\sqrt{1+|\varepsilon|^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{1}{2} \Gamma_{12}}} \approx \sqrt{\frac{M_{12}^{*}}{M_{12}}} \sqrt{\frac{1-\frac{1}{2} \Gamma_{12}^{*}}{1-\frac{i}{M_{1}}} \frac{\Gamma_{12}}{2 M_{12}}} \quad \frac{\Gamma_{12}}{M_{12}} \propto \frac{m_{c}^{2}}{m_{t}^{2}} \\
& \frac{p}{q}=\frac{1+\varepsilon}{1-\varepsilon} \approx \frac{M_{12}^{*}}{M_{12}}\left[1+O\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]=e^{i \delta}\left[1+O\left(\frac{\Gamma_{12}}{M_{12}}\right)\right] \\
& \frac{\Gamma\left(\bar{B}^{0} \rightarrow l^{+} \bar{X}\right)-\Gamma\left(B^{0} \rightarrow l^{-} X\right)}{\Gamma\left(\bar{B}^{0} \rightarrow l^{+} \bar{X}\right)+\Gamma\left(B^{0} \rightarrow l^{-} X\right)}=\frac{\left|p_{B}\right|^{2}-\left|q_{B}\right|^{2}}{\left|p_{B}\right|^{2}+\left|q_{B}\right|^{2}} \\
& \approx O\left(\frac{\Gamma_{12}}{M_{12}}\right) \quad \approx \frac{2 \operatorname{Re} \varepsilon}{1+|\varepsilon|^{2}} \\
& \operatorname{Im} \varepsilon \text { is large! }
\end{aligned}
$$

Can we find an
observable related to $\operatorname{Im} \varepsilon$?
B is definitely different from K !

When I gave a seminar at Cornell, I said ε is large and CP violation is large in B decays.

But I did not have an example to show it!
They asked me to come back in two months and give another seminar.

I was really desperate to discover an effect!

$$
\frac{p}{q}=\frac{1+\varepsilon}{1-\varepsilon} \approx \frac{M_{12}^{*}}{M_{12}}=e^{i \delta}
$$

How can we detect δ ?

I knew that you need 3 generations participating in CP violating decays

Only way for three generations to appear in K decay

For B decay, 3 generations participate in tree graph decays!

My friend and I

This came easy!

$\frac{\operatorname{Br}\left(B \rightarrow \pi^{+} \pi^{-}\right)-\operatorname{Br}\left(\bar{B} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{Br}\left(B \rightarrow \pi^{+} \pi^{-}\right)+B r\left(\bar{B} \rightarrow \pi^{+} \pi^{-}\right)} \propto \operatorname{Im}\left[e^{i \delta} \frac{A\left(B \rightarrow \pi^{+} \pi^{-}\right)}{A\left(\bar{B} \rightarrow \pi^{+} \pi^{-}\right)}\right]$

But I new CLEO will not see this decay for a long time!

Can we find large CP asymmetry in major decay modes of B?

This took 2 weeks

Final state is not CP eigenstate

Carter AIS 1980

Discovery after 1980

- $1980 \Upsilon(4 S)$
- $1981 \Upsilon(4 S) \nrightarrow B \bar{B}^{*}$

■ 1982 Longevity of B mesons
■ 1986 B- \bar{B} mixing

- $1991 \mathrm{~b} \rightarrow \mathrm{ul} \nu$
- $1995 \mathrm{~b} \rightarrow \mathrm{~s} \gamma$
- $1997 \mathrm{~B} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mp} ; \mathrm{K}^{ \pm} \mathrm{K}^{\mp} ; \pi^{ \pm} \pi^{\mp}$;

Problem

Asymmetry vanishes for $\mathrm{J}=1 \mathrm{BB}$ state

$$
\begin{aligned}
& \begin{array}{c}
e^{+} e^{-} \rightarrow \underbrace{B\left(t_{1}\right)}_{\mu^{ \pm}+X} \bar{B}\left(t_{2}\right) \rightarrow \psi K_{S} \quad \text { asym }=\operatorname{Im}\left(\frac{q}{p} p\right) \sin \left[\Delta m\left(t_{1}-t_{2}\right)\right] \\
\mu^{ \pm}
\end{array} \\
& e^{+} e^{-} \rightarrow \mathrm{Y}(4 S) \rightarrow B \bar{B}^{*} \rightarrow B \bar{B} \gamma \\
& T_{\text {S-Wave }} \\
& \operatorname{asym}=\operatorname{Im}\left(\frac{q}{p} \rho\right) \sin \left[\Delta m\left(t_{1}+t_{2}\right)\right]
\end{aligned}
$$

1982 MAC-MARKII Discovery: Longevity of B

It is absolutely important for B's to

live long enough to show interesting physics

$\sin \Delta M t=\sin \frac{\Delta M}{\Gamma_{B}} \frac{t}{\tau_{B}}$

(A)

(B)

1986 Argus discovery of $\mathrm{B} \overline{\mathrm{B}}$ mixing

$$
\begin{array}{r}
B_{1}^{0} \rightarrow D_{i}^{*} \mu_{1}^{+} \nu_{1} \\
\bigsqcup_{\pi_{1}^{-}} \bar{D}^{0} \\
L_{K_{1}^{*} \pi_{1}^{-}}
\end{array}
$$

$$
\mathrm{B}_{2}^{0} \rightarrow \mathrm{D}_{2}^{*-} \mu_{2}^{+} \nu_{2}
$$

$$
L_{\pi^{0} D^{-}}^{\mu_{2}}
$$

$$
L_{\gamma \gamma}^{L_{K_{2}^{\prime} \pi_{2} \pi_{2}^{-}}}
$$

GLOBAL FIT: RESULTS

Global fit including $\sin 2 \phi_{1}$:

Asymmetry in $\quad B \rightarrow K_{S}+X$

$$
\begin{array}{lll}
s_{3}+s_{2} e^{i \delta}=V_{c b} & S_{1} S_{3}=V_{u b} & s_{2} \approx .02 \\
\left|V_{c b}\right|=A \lambda^{2} & \left|V_{u b}\right|=A \lambda^{3} & \xi \approx 1
\end{array}
$$

Small Br and big asym

Or

Big Br and small asym?

$$
\sigma\left(\frac{N_{+}-N_{-}}{N_{+}+N_{-}}\right)=\frac{\sqrt{N}}{N} \propto \frac{1}{\sqrt{B r}}
$$

$$
\begin{aligned}
& \frac{A s y m}{\sigma}>3 \\
& \Rightarrow A s y m \times \sqrt{B r}>3
\end{aligned}
$$

Better to sacrifice events and go for larger asymmetry

Factor of 2 increase in the asymmetry is equivalent to a factor of 4 increase in Br

Big Asym Even Br small is better

B

Bigi AIS 1981

$$
\begin{array}{r}
\text { asym }=\frac{-x}{1+x^{2}} \sin 2 \phi_{1} \\
\phi_{1}=\tan ^{-1} \frac{\eta}{1-\rho}
\end{array}
$$

Around 1985 we gave up CLEO and started to discuss time dependence

$$
\begin{gathered}
e^{+} e^{-} \rightarrow \underbrace{B\left(t_{1}\right) \bar{B}\left(t_{2}\right) \rightarrow \psi K_{S}}_{\mu^{ \pm}+X} \\
\text { asym }=\frac{\Gamma_{-}-\Gamma_{+}}{\Gamma_{-}+\Gamma_{+}}=\operatorname{lm}\left(\frac{q}{p} \rho\right) \sin \left[\Delta m\left(t_{1}-t_{2}\right)\right]
\end{gathered}
$$

Unitarity Triangle 1987

Bj notation
Rosner\&AIS
Fermilab proeedings

$V_{c b} V_{c d}{ }^{*}+V_{u b} V_{u d}{ }^{*}+V_{t b} V_{t d}{ }^{*}=0$

Birth of the asymmetric collider

Symmetric collider

B's travel only .02 mm take data in 1 psec Asymmetric collider

Oddone

Symmetric Collider

Asymmetric Collider

Deciding on the energy Hitlin, Nakada, AIS snowmass

\square
Looked for the best asymmetry

$$
9 \mathrm{GeV} \times 3 \mathrm{GeV} \text { is best. } \mathrm{s} \approx \mathrm{M}_{\mathrm{r}}^{2}
$$

$B \rightarrow \psi K_{S}$ asymmetries discovered

July, 2000

$$
\begin{array}{ll}
\sin 2 \phi_{1}=0.82 \pm 0.12(\text { stat }) \pm 0.05(\text { syst }) & \text { Belle } \\
\sin 2 \phi_{1}=0.75 \pm 0.09(\text { stat }) \pm 0.04(\text { syst }) & \text { Babar }
\end{array}
$$

What we know

$$
\begin{aligned}
& \mathrm{B} \rightarrow J / \psi K_{S}, \psi(2 S) K_{S}, \chi_{C 1} K_{S}, \eta_{C} K_{S}, J / \psi K^{0^{*}}, J / \psi K_{L} \\
& \sin 2 \phi_{1}=.719 \pm 0.074 \pm 0.035
\end{aligned}
$$

$B \rightarrow \phi K_{S}$ asymmetry
$-0.73 \pm 0.64 \pm 0.18$ (Belle)
$-0.19_{-0.50}^{+0.52} \pm 0.09$ (Babar)

Very interesting! Lets wait and see.

What we have leaned

$$
\frac{A(B \rightarrow f)}{A(\bar{B} \rightarrow \bar{f})}=\frac{V_{T} T+V_{P} P e^{i \delta}}{V_{T}^{*} T+V_{P}^{*} P e^{i \delta}} \quad \frac{A(B \rightarrow f)}{A(\bar{B} \rightarrow \bar{f})}=\frac{V_{T}}{\frac{1+\frac{V_{P} P e^{i \delta}}{V_{T}^{*}}}{1+\frac{V_{P}^{T} P e^{i \delta}}{V_{T} T}}}
$$

Ratio is independent of strong interaction if:

1. Penguin and Tree have same KM phase
2. Penguin is absent

Penguins seems to be large in B decays

$$
\begin{gathered}
\frac{A(B \rightarrow K \pi)}{A(B \rightarrow \pi \pi)}=\frac{V_{u b}^{*} V_{u s} T+V_{t b}^{*} V_{t s} P}{V_{u b}^{*} V_{u d} T+V_{t b}^{*} V_{t d} P}=\frac{\lambda^{4} T+\lambda^{2} P}{\lambda^{3} T+\lambda^{3} P} \\
\text { If T dominated over } \mathrm{P}, \quad \frac{B r(B \rightarrow K \pi)}{\operatorname{Br}(B \rightarrow \pi \pi)}=\lambda^{2} \approx \frac{1}{20}
\end{gathered}
$$

$$
\frac{\operatorname{Br}(B \rightarrow K \pi)}{\operatorname{Br}(B \rightarrow \pi \pi)}>1 \quad \Rightarrow \quad \frac{P}{T}>\lambda
$$

Fat penguins

We expected $\quad \frac{P}{T}=\frac{\alpha}{12 \pi^{2}} \log \frac{M_{W}}{\mu}=O\left(\lambda^{2}\right)$

Exciting years of flavor physics

The end

