Solar Neutrino Observations at the Sudbury Neutrino Observatory (SNO)

Institute for Nuclear and Particle Astrophysics Lawrence Berkeley National Laboratory

† for the SNO Collaboration

- 1. Introduction the Solar Neutrino Problem (SNP)
- 2. Results from the Sudbury Neutrino Observatory
- 3. Physics Implications
- 4. Summary

pp Chain: $4p + 2e \rightarrow {}^{4}He + 2v_{e} + 26.7MeV$

Experiment	Reaction
Homestake	v_e^+ ³⁷ Cl \rightarrow ³⁷ Ar+e
SAGE	v _e + ⁷¹ Ga→ ⁷¹ Ge+e
Gallex + GNO	v _e + ⁷¹ Ga→ ⁷¹ Ge+e
Kamiokande +	
Super-Kamiokande	v _x +e→v _x +e

GALLEX :	$\frac{\phi_{Ga}(v_e)}{\phi_{SSM}(v_e)} = 0.58 \pm 0.05$
SAGE :	$\frac{\phi_{Ga}(v_e)}{\phi_{SSM}(v_e)} = 0.60 \pm 0.05$
Homestake :	$\frac{\phi_{Cl}(v_e)}{\phi_{SSM}(v_e)} = 0.34 \pm 0.03$
Super-K:	$\frac{\phi_{SK}(v_x)}{\phi_{SSM}(v_e)} = 0.451^{+0.017}_{-0.015}$

The lepton mixing matrix (Maki-Nakagawa-Sakata-Pontecorvo) is expressed as

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

and the $\nu_{\rm e}$ flavor state evolves as

$$v_e = U_{e1}e^{-iE_1t}v_1 + U_{e2}e^{-iE_2t}v_2 + U_{e3}e^{-iE_3t}v_3$$

2 ∨ Survival Prob.

$$P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] L[\text{m}]}{E[\text{MeV}]} \right) \text{ where } \Delta m^2 = m_2^2 - m_1^2$$

Note: May also have resonant flavor conversion in matter — Mikheyev-Smirnov-Wolfenstein (MSW) effect

Sudbury Neutrino Observatory

17.8m dia. PMT Support Structure 9456 20-cm dia. PMTs 56% coverage

12.01m dia. acrylic vessel

1700 tonnes of inner shielding H_2O

5300 tonnes of outer shielding H₂O

$$cc v_e + d \rightarrow p + p + e^{-}$$

- Measurement of $\nu_{\rm e}$ energy spectrum
- Weak directionality: $1 0.340 \cos\theta$

NC
$$v_x + d \rightarrow p + n + v_x$$

- Measure total ${}^8\!B\,\nu$ flux from the sun - $\sigma(\nu_e){=}~\sigma(\nu_\mu){=}~\sigma(\nu_\tau)$

ES
$$V_x + e^- \rightarrow V_x + e^-$$

- Low Statistics
- $\Sigma \phi = \phi(v_e) + 0.154 \phi(v_\mu + v_\tau)$
- Strong directionality: $\theta_e \leq 18^\circ$ ($T_e = 10 \text{ MeV}$)

rrrrrr

Alan Poon, SLAC Summer Institute Topical Conference 2002

$v_x + d \rightarrow n + p + v_x$

- 1. v_e disappearance and $v_{\mu/\tau}$ appearance in one experiment:
 - Direct measurement of the total active ${}^8B v$ flux
 - No ambiguity in combining results from experiments with different systematics (e.g. energy resolution)

Neutrino Flux

 Lowest E_v threshold (2.2 MeV) for real time experiments [No energy spectral information]

→ SNO NC → SNO CC

Alan Poon, SLAC Summer Institute Topical Conference 2002

Nov 2, 1999 to May 28, 2001 306.4 live days \rightarrow *Day=*128.5 days, *Night=*177.9 days

Analysis Step	Events
Total Event Triggers	450,188,649
Neutrino Data Trigger	191,312,560
NHIT ≥30	10,088,842
Instrumental Background	7,805,238
Cherenkov "likelihood"	3,418,439
Fiducial Volume (R<550cm)	67,343
Energy Threshold (T>5 MeV)	3440
Muon Follower	2981
Residual Cosmic Background	2928
Candidate Event Set	2928

[c.f. High energy CC paper: 240.9 live days, 1169 candidate events]

A neutrino candidate event

Remove instrumental background using:

- PMT time & charge distribution
- Event time correlation
- Veto PMT tag
- Reconstruction information
- Light isotropy & arrival timing

Light arrival timing

v signal loss:CC: $1.43_{-0.21}^{+0.39}\%$ ES: $1.46_{-0.21}^{+0.40}\%$ NC: $2.28_{-0.23}^{+0.41}\%$ Residual instrumental bkg. contamination:< 3 events (95% CL)</th>

Alan Poon, SLAC Summer Institute Topical Conference 2002

Calibration:

- PMT & Optics
- Normalized to ${}^{16}N$ [E_y=6.13 MeV]
- Check with
 - ⁸Li [13 MeV β]
 - ²⁵²Cf [d(n,γ), E_γ=6.25 MeV]
 - ³H(p,γ) [19.8 MeV γ]

 $\Delta E/E = \pm 1.21\%$ $\Delta \sigma/\sigma = + 4.5\%$ Linearity = $\pm 0.23\%$ @ E_e=19.1 MeV

	$\Delta \phi^{\rm CC} / \phi^{\rm CC}$	$\Delta \phi^{\text{NC}} / \phi^{\text{NC}}$
ΔΕ	+4.3 -4.2	+6.1 -6.2
Δσ	+0.0 -0.9 [%]	+4.4 -0.0 %
Linearity	±0.1%	±0.4%
Total	+4.3 -4.3	+7.5 -6.2 %

Alan Poon, SLAC Summer Institute Topical Conference 2002

Alan Poon, SLAC Summer Institute Topical Conference 2002

Measuring the U and Th Concentration in "Water" muni-

Alan Poon, SLAC Summer Institute Topical Conference 2002

LE Background Summary

For T _e ≥ 5 MeV, R<550cm	pd neutron bkg. (counts)	
D ₂ O	44_9+8	
H ₂ O+AV	27 ⁺⁸ -8	
Atmospheric v	4 ± 1	
²³⁵ U spont. fission	<< 1	
² Η(α,α)pn	2.0 ± 0.4	
¹⁷ Ο(α, n)	<< 1	
Terrestrial & reactor v	1 ₋₁ +3	
External neutrons	<< 1	
Total	78 ± 12	

	Tail Bkg	
	(counts)	
D ₂ O	20 ⁺¹³ -6	
H ₂ O	3 ₋₃ +4	
AV	6 ⁺³ ₋₆	
РМТ	16 ⁺¹¹ -8	
Total	45 ⁺¹⁷ -11	

[c.f.: 2928 ν candidates]

12% of the number of observed NC neutrons assuming standard solar model v flux

Extracting the v Signals

Signal Extraction Results

Alan Poon, SLAC Summer Institute Topical Conference 2002

0

Ο

 $\phi_{\mu\tau} (10^6 \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1})$

6

5

0

Disappearance and Reappearance

(syst.)

The day-night analysis is currently statistics limited

- Inputs: ³⁷Cl, latest Gallex/GNO, new SAGE, SK 1258-day day & night spectra
 - SNO day spectrum (total: CC+NC+ES+background)
 - SNO night spectrum (total: CC+NC+ES+background)
 - ⁸B floats free in fit, hep v at 1 SSM

Alan Poon, SLAC Summer Institute Topical Conference 2002

Region	χ _{min} ²/dof	ϕ_{8B}	A _e (%)	∆m ²	tan²θ	CL(%)
LMA	57.0/72	5.86	6.4	5.0x10 ⁻⁵	0.34	
LOW	67.7/72	4.95	5.9	1.3x10 ⁻⁷	0.55	99.5%

 SNO CC/NC measurement directly constrains the survival probability at high energy ⇒ forces LOW solution to confront the Ga experimental results:

	LMA	LOW
SNO NC	5.86 x10 ⁶ cm ⁻² s ⁻¹	4.95 x10 ⁶ cm ⁻² s ⁻¹
SNO CC day	1.66 x10 ⁶ cm ⁻² s ⁻¹	1.83x10 ⁶ cm ⁻² s ⁻¹
SNO A _e	6.4%	5.9%
SK ES	2.30 x10 ⁶ cm ⁻² s ⁻¹	2.30 x10 ⁶ cm ⁻² s ⁻¹
SK A _{ES}	3.5%	4.4%
CI rate	3.0 SNU	3.0 SNU
Ga rate	72.8 SNU	61.2 SNU

[Experimental results: SK=2.32x10⁶ cm⁻² s⁻¹, Ga=72.0±4.5 SNU, Cl=2.56±0.23 SNU]

Present situation:
Solar
$$v_e$$
 mix with $\frac{v_{\mu} - v_{\tau}}{\sqrt{2}}$
 $v_e = 0.85v_1 + 0.51v_2$
 $v_{\mu} = -0.36v_1 + 0.60v_2 + 0.71v_3$
 $v_{\tau} = 0.36v_1 - 0.60v_2 + 0.71v_3$

Contrast between V_{CKM} (quark) and U_{MNSP} (lepton)

 $[B = Big \qquad s = small]$

The Salt Phase

- 2 tonnes of NaCl added to D₂O
- Higher n-capture efficiency
- Higher event light output
- Light isotropy differs from e⁻
- Running since June 2001

Neutral Current Detectors

³He proportional counters $n + {}^{3}\text{He} \rightarrow p + t$

- To be deployed in early 2003
- Event-by-event separation of n

Newest SNO results :

- $\nu_e \rightarrow \nu_\mu$ or ν_τ appearance at 5.3 σ
- Total ⁸B ν flux measured for E_{ν}>2.2 MeV
- SSM prediction for total active $^8\text{B}~\nu$ flux verified
- Day-Night results consistent with MSW hypothesis

Global fit including the newest SNO results :

- LMA highly favored ($\Delta m^2 \sim 5.0 \times 10^{-5} \text{ eV}^2$)
- No "dark side" and not maximal mixing $(m_1 > m_2, \tan^2(\theta) < 1)$
- Predictions for Borexino & KamLAND

The NC and Day-Night papers (in July 1 issue of PRL), along with a HOWTO guide on using the SNO results are available at the official SNO website:

http://sno.phy.queensu.ca

G. Milton, B. Sur Atomic Energy of Canada Ltd., Chalk River Laboratories

S. Gil, J. Heise, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia

> J. Boger, R.L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory

R.C. Allen, G. Bühler, H.H. Chen^{*} University of California, Irvine

I. Blevis, F. Dalnoki-Veress, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky **Carleton University**

T.C. Anderson, P. Jagam, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang University of Guelph

J. Bigu, J.H.M. Cowan, J. Farine, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C.J. Virtue Laurentian University

Y.D. Chan, X. Chen, M.C.P. Isaac, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E Rosendahl, A. Schülke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A.S. Hamer, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory

J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada

J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B.T. Cleveland, X. Dai, G. Doucas, J.A. Dunmore, A.P. Ferarris, H. Fergani, K. Frame, N. Gagnon, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, G. McGregor, M. Moorhead, M. Omori, C.J. Sims, N.W. Tanner, R.K. Taplin, M.Thorman, P.M. Thornewell, P.T. Trent, N. West, J.R. Wilson University of Oxford

E.W. Beier, D.F. Cowen, M. Dunford, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, N. McCauley, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L Rusu, R. Van Berg, P. Wittich University of Pennsylvania

> R. Kouzes Princeton University

E. Bonvin, M. Chen, E.T.H. Clifford, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, K. Graham, A.L. Hallin, W.B. Handler, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat, T.J. Radcliffe, B.C. Robertson, P. Skensved Queen's University

D.L. Wark Rutherford Appleton Laboratory, University of Sussex

R.L. Helmer, A.J. Noble **TRIUMF**

Q.R. Ahmad, M.C. Browne, T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, S.R. Elliott, J.A. Formaggio, J.V. Germani,
A.A. Hamian, R. Hazama, K.M. Heeger, K. Kazkaz, J. Manor,
R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K.K. Schaffer,
M.W.E. Smith, T.D. Steiger, L.C. Stonehill, J.F. Wilkerson
University of Washington

Supplementary slides from this point on

VOLUME 55, NUMBER 14

PHYSICAL REVIEW LETTERS

30 SEPTEMBER 1985

Direct Approach to Resolve the Solar-Neutrino Problem

Herbert H. Chen Department of Physics, University of California, Irvine, California 92717 (Received 27 June 1985)

A direct approach to resolve the solar-neutrino problem would be to observe neutrinos by use of both neutral-current and charged-current reactions. Then, the total neutrino flux and the electron-neutrino flux would be separately determined to provide independent tests of the neutrino-oscillation hypothesis and the standard solar model. A large heavy-water Cherenkov detector, sensitive to neutrinos from ⁸B decay via the neutral-current reaction $v + d \rightarrow v + p + n$ and the charged-current reaction $v_e + d \rightarrow e^- + p + p$, is suggested for this purpose.

PACS numbers: 96.60.Kx, 14.60.Gh

PRL 55, 1534 (1985)

An experiment which directly addresses the solarneutrino problem should be sensitive to all neutrino species equally. Such a measurement could determine the total solar-neutrino flux *even if neutrinos oscillate*.

Result 1: $v_e \rightarrow v_{\mu,\tau}$ Excludes: pure $v_e \rightarrow v_{sterile}$ at 3.1 σ

Result 2:

Solar model predictions are verified

Alan Poon, SLAC Summer Institute Topical Conference 2002

Monte Carlo

- Cherenkov production (e⁻, γ)
- Photon propagation and detection
- Neutron transport and capture
- Event Reconstruction

Electronic

6.13 MeV γ's

19.8 MeV γ's

neutrons

<13.0 MeV β's

337nm to 620 nm

- Charge Pulsers
- Pulsed Laser
- ¹⁶N
- ³H(p,γ)⁴He
- ⁸Li
- ²⁵²Cf
- U/Th Background $~^{214}\text{Bi}$ & ^{208}TI $\beta\text{--}\gamma\text{'s}$

Absolute Energy Calibration Uncertainties

Time drift	0.25%
Position Dependence	0.72%
¹⁶ N source	0.46%
Rate dependence	0.39%
Threshold dependence	0.45%
Gain variation	0.28%
Channel accounting	0.00%
Background noise	0.00%
Timing calibration	0.50%
Total	1.21%

Energy Response functions

$$\begin{split} R(E_e, E_{eff}) &= \frac{1}{\sqrt{2\pi} \sigma_E(E_e)} \exp \left[-\frac{1}{2} \left(\frac{E_{eff} - E_e}{\sigma_E(E_e)} \right)^2 \right] \\ \sigma_E(E_e) &= -0.6837 + 0.3308 \sqrt{E_e - 0.511} + 0.04253(E_e - 0.511) \\ \frac{\Delta \sigma_E(E_e)}{\sigma_E(E_e)} &= 0.045 + 0.00401(E_e - 5.486) \end{split}$$

Г

,

 $\sqrt{2}$

Analytic Prediction n capture efficiency			
Isotope	Abundance	Point Source at Center	Uniform Source
D	99.9176%	49.11%	29.34%
Н	0.0824%	29.76%	17.79%
16-0	99.9195%	9.20%	5.49%
17-0	0.0485%	5.36%	3.20%
18-0	0.0320%	0.02%	0.00%
Escape		6.55%	44.15%
Total		100%	100%

n capture on d (uniform source) 29.9 ± 1.1 %

pd background from D₂O, AV, H₂O radioactivity

	D ₂ O (10 ⁻¹⁵ g/g D ₂ O)	H ₂ O (10 ⁻¹⁴ g/g H ₂ O)	AV (10 ⁻¹² g/g)
[Th]	1.63±0.58	9.1±2.7	0.90 ^{+0.60} _{-0.53}
[U]	$17.8^{+3.5}_{-4.3}$	75.5 ± 33.0	0.27 ^{+0.07} _{-0.03}
Monte Carlo			
<i>pd</i> n detected (306.4 d)	44_{-9}^{+8} counts	11^{+6}_{-4} counts	16^{+6}_{-7} counts

The photodisintegration background is small compared to the SSM expectation

Original Target (2 ppt): 60 μg Th or U

- Bulk acrylic assayed (NAA)
- Dust concentration on inner and outer surfaces measured prior to filling
- Hot spot ("Berkeley Blob") found in Cherenkov data

	U	Th
	(µg)	(μ g)
Bulk	7.5 ^{+1.7}	15 ± 15
Outer surface	0.18 ± 0.04	0.96 ± 0.19
Inner surface	0.16 ± 0.04	0.87 ± 0.17
Blob		10 ⁺⁹ _4
Total	8 ⁺² ₋₁ μg	27 ⁺¹⁸ ₋₁₆ μg
<i>pd</i> n detected (306.4 d)	2 ± 2 counts	14^{+6}_{-7} counts

[c.f. SSM ~ 2 detected n d⁻¹]

 Monte Carlo of detector response well calibrated in the D₂O region

⇒ Determine Cherenkov tail background due to D_2O radioactivity by Monte Carlo, using the U and Th concentration obtained above.

 MC predictions cross checked with a Th calibration source

T>5 MeV, R<550cm:

 Th:

$$3^{+2}_{-1}$$
 counts

 U:
 17^{+12}_{-5} counts

- Determined from U/Th source calibration and Monte Carlo
- Consistent with expectation based on measured U and Th concentration

• Signal Extraction in ϕ_{CC} , ϕ_{NC} , ϕ_{ES} :

$$\begin{array}{l} \mathsf{A}_{\rm CC} = 14.0 \pm 6.3^{+1.5}_{-1.4}\% \\ \mathsf{A}_{\rm NC} = 20.4 \pm 16.9^{+2.4}_{-2.5}\% \end{array}$$

- Signal Extraction in $\phi_{e'}$, ϕ_{Total} : $[\phi_{Total} = \phi_e + \phi_\mu + \phi_\tau]$ $A_e = 12.8 \pm 6.2^{+1.5}_{-1.4}\%$ $A_{Total} = 24.2 \pm 16.1^{+2.4}_{-2.5}\%$
- Signal Extraction in $\phi_{e'}$, $\phi_{Total} + A_{total} = 0$:

$$\begin{array}{l} A_e = 7.0 \pm 4.9^{+1.3}_{-1.2}\% \\ A_e^{SK} = 5.3 \pm 13.7^{+2.0}_{-1.7}\% \end{array}$$

Does the sun shine "brighter" at night?

- Data divided into two sets (to test statistical bias)
- Sub-divide data into two zenith angle bins:

Day: cos θ_z >0 (128.5 days) *Night:* cos θ_z <0 (177.9 days)

• Extract ϕ^{CC} , ϕ^{NC} , and ϕ^{ES} in these 2 bins (⁸B shape constrained fit)

Counts/day/0.5 MeV T>5 MeV (a) 1.5 Ó Night R<550 cm Day 0.5 0 8 9 12 3 20Kinetic energy (MeV) Counts/day/0.5 MeV 0 0 0 0 5'0' (b) Night-Day 5 7 8 12 9 6 10 13 20Kinetic energy (MeV)

Day: 9.23±0.27 events d⁻¹

Night: 9.79±0.24 events d⁻¹

*Signal and background included

Shape constrained

Day/Night Systematics									
Systematic	δΑсс	δAes	δΑνς						
	%	%	%						
Long-term Energy Scale	0.40	0.50	0.20						
Diurnal Energy Scale	1.20	0.70	1.60						
Directional Energy Scale var.	0.20	1.40	0.30						
Diurnal Energy Resolution var.	0.10	0.10	0.30						
Directional Energy Resolution var.	0.00	0.10	0.00						
Diurnal vertex shift var.	0.50	0.60	0.70						
Directional vertex shift var.	0.00	1.10	0.10						
Diurnal vertex resolution var.	0.20	0.70	0.50						
Directional angular recon. var.	0.00	0.10	0.10						
PMT β – γ backgrounds	0.00	0.20	0.50						
AV+H2O β – γ backgrounds	0.00	0.60	0.20						
D2O b-g, neutrons backgrounds	0.10	0.40	1.20						
External neutrons backgrounds	0.00	0.20	0.40						
Cut inefficiencies	0.50	0.50	0.50						
Total	1.50	2.40	2.40						

Dou / Ni alat Ourataria

The D-N analysis is currently statistics limited

Detector is in GOOD shape

Quark Sector

Weak Interaction for quarks – consider the absorption of a W⁺

$$\mathsf{L}_{udW} = \frac{-g}{\sqrt{2}} \sum_{\substack{\alpha=u,c,t\\i=d,s,b}} \overline{u_{L\alpha}} \gamma^{\lambda} \mathbf{V}_{\alpha i} d_{Li} W_{\lambda}^{+} + h.c.$$

Alan Poon, SLAC Summer Institute Topical Conference 2002

Lepton Sector

Similar Langrangian for leptons

$$\mathbf{L}_{lvW} = \frac{-g}{\sqrt{2}} \sum_{\substack{\alpha = e, \mu, \tau \\ i=1,2,3}} \overline{l_{L\alpha}} \gamma^{\lambda} \mathbf{U}_{\alpha i} \mathbf{v}_{Li} W_{\lambda}^{-}$$
$$+ \frac{-g}{\sqrt{2}} \sum_{\substack{\alpha = e, \mu, \tau \\ i=1,2,3}} \overline{v_{Li}} \gamma^{\lambda} U_{i\alpha}^{\dagger} l_{L\alpha} W_{\lambda}^{+}$$

Global fit:

 $LMA \rightarrow \Delta m^2 = 5x10^{-5} eV^2$

LARGE MIXING SCENARIO? \rightarrow KamLAND (Kamioka, Japan) reactor v @ "right" baseline for probing the currently favored LMA region

1 kt liquid scintillator as target

$$\overline{v}_{e} + p \rightarrow n + e^{+}$$
2x coincidence
$$e^{+} + e^{-} \rightarrow 2\gamma$$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

Reactor v physics at KamLAND

- No oscillation scenario, expect: ~150 events in 3 months
- If LMA, expect:
 ~110 events in 3 months
- ~ 3σ statistical significance in 3 months

Data taking began on Jan. 22, 2002

LOW: large D-N asymmetry in ⁷Be flux →**Borexino** (Gran Sasso, Italy)

 $\rightarrow 23^{+10}_{-13}\%(3\sigma)$

300t liquid scintillator as target. Measure the 7 Be v flux by elastic scattering:

 $v + e \rightarrow v + e$

Very stringent radioactive background requirements

Data-taking will begin in 2003

Borexino prototype ("Counting Test Facility")

Bahcall et al. hep-ph/0204314

Goals:

- Precision measurement of $\theta_{\text{12,}}$ test unitarity of MNSP matrix
- Constrain on active-sterile $\mathbf v$ mixing
- Test of solar models

Future solar v experiments

Nakahata, LowNu2002

		Next Generation Solar Neutrino Experiments								
		Fiducia	al Mass	Threshold (keV)			BP00 rate (per year)			
Expt.	Туре	Tons	of	ES	CC	NC	pp+	⁷ Be	⁸ B	CNO
							рер			
HERON	LHe	5	He	50			3025	1500	2	125
	rotons,									
	scintillator									
HELLAZ	Gas TPC	7	He	180			4000			
		-								
CLEAN	Scintillator	12.5	Ne	10			9000			
XMASS	Scintillator		Xe							
		_	1702 4							
LENS	Scintillator	5	^{1/®} Yb		301.45		570	400	32	136
	Cointillator	0.0	100 • 4 -		100		400	100	- 4	0.4
MOON	Scintillator	3.3	OINIO		108		409	129	14	34
CI	Hybrid	2200	37 CI		<u>81/</u>		230	1200	5000	120
CI	пурпа	2200	OI		014		200	1200	3300	420
GaAs	Ionization		⁷¹ Ga							
0.0710	ion Zation		53							
LiF	Bolometer	0.9	⁷ Li		862	487	27	29		
-										