# Lecture 3: Time-Dependent Asymmetries as a Test of the Standard Model

- CP asymmetries in CP eigenstates involving  $b \rightarrow c\overline{c}s$  transitions
- Measuring  $sin 2\beta$  in other channels
- Asymmetries in 2-body neutral B decays
- Brief word on future prospects and plans



# Experimental Technique for B Factories



### CP Sample for BABAR



# Improved Tagging at BABAR



7% improvement in Q =  $\varepsilon D^2 (\Delta Q = 1.9\%)$ 



# Flavor Tagging Performance in Data

The large sample of fully reconstructed events provides the precise determination of the tagging parameters required in the *CP* fit

| Tagging<br>category                               | Fraction of<br>tagged events ε<br>(%) | Wrong tag<br>fraction w (%)                                                                                                                            | Mistag fraction<br>difference ∆w<br>(%) | Q =<br>ε(1-2w)² (%)                                             |
|---------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|
| Lepton                                            | <i>9.1 ± 0.2</i>                      | 3.3 ± 0.6                                                                                                                                              | -0.9 ± 0.5                              | 7.9 ± 0.3                                                       |
| Kaon I                                            | 16.7 ± 0.2                            | 9.9 ± 0.7                                                                                                                                              | -0.2 ± 0.5                              | <i>10.7 ± 0.4</i>                                               |
| Kaon II                                           | 19.8 ± 0.3                            | 20.9 ± 0.8                                                                                                                                             | -2.7 ± 0.6                              | 6.7 ± 0.4                                                       |
| Inclusive                                         | 20.0 ± 0.3                            | 31.6 ± 0.9                                                                                                                                             | -3.2 ± 0.6                              | 0.9 ± 0.2                                                       |
| ALL /                                             | 65.6 ± 0.5                            |                                                                                                                                                        |                                         | 28.1 ± 0.7                                                      |
| hest "efficiency" Error on si<br>the "qualit<br>σ |                                       | in2 $\beta$ and $\Delta m_{d}$ deperturbation of $\Delta m_{d}$ deperturbation of $\Delta m_{d}$ approximately $(\sin 2\beta) \sim \frac{1}{\sqrt{Q}}$ | end on<br>ox. as: Smal                  | lest mistag fractio<br><b>BABAR</b><br>811.3 fb <sup>-1</sup> 1 |
| Aug 5-7, 2002 D.MacFarlane at SSI 2002            |                                       |                                                                                                                                                        | 02                                      | 5                                                               |

#### Comparison Tests with New Tagger



# Golden Sample: (cc)K<sub>5</sub> CP Eigenstates



# CP Eigenstate Sample: J/ $\psi$ K<sub>L</sub>







# Measuring Mistag Rate



# CP Analysis: Time Distributions



same mistag probability  $\omega$ and time-resolution function  $R(\Delta t)$ 



# Time-Dependent CP Asymmetries

Time-dependence of  $B^{\circ}-\overline{B}^{\circ}$  mixing



Use the large statistics B<sub>flav</sub> data sample to determine the **mistag probabilities** and the parameters of the **time-resolution function** 





Combined unbinned maximum likelihood fit to  $\Delta t$  spectra of  $B_{\text{flav}}$  and *CP* samples

| Fit Parameters                                           | #  | Main Sample                    |
|----------------------------------------------------------|----|--------------------------------|
| <b>Sin2</b> β                                            | 1  | Tagged CP sample               |
| Mistag fractions for $B^{0}$ and $\overline{B}^{0}$ tags | 8  | Tagged flavor sample           |
| Signal resolution function                               | 8  | Tagged flavor sample           |
| Empirical description of background $\Delta t$           | 17 | Sidebands                      |
| B lifetime from PDG 2002                                 | 0  | $\tau_{B} = 1.542 \ ps$        |
| Mixing frequency from PDG 2002                           | 0  | $\Delta m_d = 0.489 \ ps^{-1}$ |
| Total parameters                                         | 34 |                                |



Global correlation coefficient for  $sin 2\beta$ : 13%

 $\checkmark$  All  $\Delta t$  parameters extracted from data

✓ Correct estimate of the error and correlations

#### **BABAR Result for sin2** $\beta$



Belle Result for  $sin2\beta$ 





Checks with control samples where no asymmetry expected

| Sample                                                   | "sin2β"      |  |
|----------------------------------------------------------|--------------|--|
| $B^{O} \rightarrow D^{*_{+}}\pi^{-}$                     | 0.035±0.032  |  |
| <b>Β</b> <sup>0</sup> → <b>J/</b> ψK*                    | -0.021±0.093 |  |
| <b>B</b> <sup>0</sup> → <b>D</b> * <b>I</b> <sub>V</sub> | 0.004±0.017  |  |



Aug 5-7, 2002

#### Belle Result for $sin2\beta$



Aug 5-7, 2002

#### Pure Gold: Lepton Tags Alone



# Check "null" Control Sample at BABAR



#### Systematic Errors on sin2 $\beta$ from BABAR

|                                                                               | σ <b>[sin2</b> β] |
|-------------------------------------------------------------------------------|-------------------|
| Description of background events                                              | 0.017             |
| CP content of background components                                           |                   |
| Background shape uncertainties, peaking component                             |                   |
| Composition and CP content of $J/\psi K_L$ background                         | 0.015             |
| At resolution and detector effects                                            | 0.017             |
| Silicon detector residual misalignment                                        |                   |
| ∆t resolution model (Gexp vs 3G, B <sub>flav</sub> vs B <sub>CP</sub> )       |                   |
| Mistag differences between B <sub>CP</sub> and B <sub>flav</sub> samples (MC) | 0.012             |
| Fit bias correction and MC statistics                                         | 0.010             |
| Fixed lifetime and oscillation frequency                                      | 0.005             |
| Total                                                                         | 0.033             |



# Monte Carlo Correction

# Potential bias on sin2β evaluated by fitting full MC in 2 ways:

- Fitting data-sized signal MC samples with mistag fractions and  $\Delta t$  resolution fixed to the MC truth values (see plot)
  - Average bias = +0.012 ± 0.005
- $\circ~$  Same as above except mistag fractions and  $\Delta t$  resolution from  $B_{reco}~MC$ 
  - Average bias = +0.014  $\pm$  0.005



- One possible source of bias comes from neglecting the known correlation between the mistag fractions and σ(Δt)
   One possible source of bias comes from the stage fractions and σ(Δt)
   Estimates from toy and full MC indicate a bias at the level of +0.004
   We correct the fitted sin28 by subtracting 0.014 and assign a stage for the stage for the sin28 by subtracting 0.014 and assign a stage for the sin28 by subtracting 0.014 and assign a stage for the stage for the stage for the sin28 by subtracting 0.014 and assign a stage for the stage f
- > We correct the fitted sin2 $\beta$  by subtracting 0.014 and assign a systematic error of 0.010 to this correction



# **Comparison of Resolution Functions**





Subsample Checks







# Standard Model Constraints



# Summary of sin2 $\beta$ from ccs modes



The Standard Model remains unscathed, but the high statistics future of *B* Factories will provide further opportunities to challenge the theory



# CP Violation in the B System



# CP Violation in the B System

- CPV through interference of decay amplitudes
- CPV through interference of mixing diagram



# Formalism for CP Violation in Mixing

*CP* (or *T*) violation in the  $B^0 \overline{B}^0$  mixing matrix results from: Mass eigenstates  $|B_{L,H}\rangle \neq CP$  eigenstates  $|B_{\pm}\rangle$ 

$$|B_{L,H}\rangle = p|B^{0}\rangle \pm q|\bar{B}^{0}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{B_{d}}|^{2}}}(|B_{\pm}\rangle + \varepsilon_{B_{d}}|B_{\mp}\rangle)$$

$$\left|\frac{q}{p}\right| = \left|\frac{1 - \varepsilon_{B_d}}{1 + \varepsilon_{B_d}}\right| \neq 1 \Rightarrow \operatorname{Prob}(B^0 \to \overline{B}^0) \neq \operatorname{Prob}(\overline{B}^0 \to B^0)$$

Time-dependent CP Asymmetry:

$$\mathcal{A}_{T}(t) = \frac{\Gamma(\bar{B}_{phys}^{0}(t) \to \ell^{+}\nu X) - \Gamma(B_{phys}^{0}(t) \to \ell^{-}\overline{\nu} X)}{\Gamma(\bar{B}_{phys}^{0}(t) \to \ell^{+}\nu X) + \Gamma(B_{phys}^{0}(t) \to \ell^{-}\overline{\nu} X)} \approx \frac{4\operatorname{Re}(\varepsilon_{B_{d}})}{1 + |\varepsilon_{B_{d}}|^{2}} \qquad \text{constant}$$
with
time

In the *B* System,  $\Delta m_d = m_{B_H} - m_{B_L} \gg \Delta \Gamma_d \Rightarrow \epsilon_d \sim \text{purely imaginary}$ 

SM: 
$$A_{f} \leq 2 \times 10^{-3}$$
; hence  $A_{f} \approx 10^{-2} \Rightarrow$  New Physics

See for instance Bañuls & Bernabéu hep-ph/0005323

# Characterizing the Dilepton Sample



# Determination of $A_T$



To a good approximation:

$$|q/p| = 1 \text{ and } q/p = e^{-2i\varphi_M} = -|M_{12}|/M_{12}|$$





| Source                            | σ <b>(A<sub>T</sub>) [%]</b> | Sample                                    |
|-----------------------------------|------------------------------|-------------------------------------------|
| Detection asymmetry for electrons | 0.5                          | Direct electrons in semileptonic B decays |
| Detection asymmetry for electrons | 0.6                          | Direct muons in semileptonic B decays     |
| Non-BB background asymmetry       | 0.7                          | Off-resonance data                        |
| BB background asymmetry           | 0.9                          | * On-resonance data<br>with Δz < 100μm    |
| Total                             | 1.4                          |                                           |
| Statistical Error                 | 1.2                          |                                           |

\*Would be zero if one assumed CP invariance in cascade decays



CP Violation in the B System

- CPV through interference of decay amplitudes
- CPV through interference of mixing diagram
- CPV through interference between mixing and decay amplitudes



Directly related to CKM angles for single decay amplitude



#### **CP Formalism Revisited**

For  $B^o$  decays, allowing for more than one amplitude contributing to the decay to  $f_{CP}$ 



Full time-dependent distributions and CP asymmetry:

$$f_{CP,\pm}(\Delta t) = \left\{ \frac{e^{-/\Delta t/\tau_{B}}}{4\tau_{B}} \left( 1 \pm S_{f_{CP}} \sin \Delta m_{d} \Delta t \mp C_{f_{CP}} \cos \Delta m_{d} \Delta t \right) \right\}$$
$$A_{-}(\Delta t) = \frac{\Gamma(\overline{B}_{phys}^{0}(\Delta t) \rightarrow f_{CP}) - \Gamma(B_{phys}^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(B_{phys}^{0}(\Delta t) \rightarrow f_{CP})} \qquad 1 - 1$$

$$\mathcal{A}_{f_{CP}}(\Delta t) = \frac{1}{\Gamma(\overline{B}^{0}_{phys}(\Delta t) \to f_{CP}) + \Gamma(B^{0}_{phys}(\Delta t) \to f_{CP})}$$
$$= C_{f_{CP}} \cos(\Delta m_{d} \Delta t) - S_{f_{CP}} \sin(\Delta m_{d} \Delta t)$$

$$\begin{split} C_{f_{CP}} &= \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} \\ S_{f_{CP}} &= \frac{-2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} \end{split}$$



# Search for Direct CP in Golden Sample

Redo fits tagged time distributions of *CP* sample with sine and cosine terms (assuming  $\Delta\Gamma = 0$ )

If more than one amplitude contributes  $|\lambda|$  might be different from 1

Probing new physics: only use  $\eta_{CP}$ = -1 sample (contains no mixing background)

BABAR:
 
$$|\lambda_{ccs}| = 0.948 \pm 0.051_{(stat)} \pm 0.017_{(syst)}$$

 Belle:
  $|\lambda_{ccs}| = 0.950 \pm 0.049_{(stat)} \pm 0.026_{(syst)}$ 

#### No evidence of direct CP violation due to decay amplitude interference

Coefficient of the "sine" term unchanged



#### Other Modes for $sin2\beta$

> Provide an independent measurement of CP violation  $\succ$  Some possible  $b \rightarrow s\bar{s}s$  modes •  $\phi K_s$  is CP = -1 with Im $\lambda$  = -sin2 $\beta$  Sensitive to new physics in b  $\rightarrow$  s loop diagram • Pure b  $\rightarrow$  s penguin process? • Other examples η'K<sub>5</sub> is CP=+1 •  $K^{+}K^{-}K_{s}$  appears to be mostly CP=+1 according to Belle Possible double-charm modes •  $B \to D^{*+}D^{*-}$  or  $B \to D^*D$  channels • No  $K_{\rm s}$  mixing, but penguins? Other charmonium modes





# BABAR Results for $\phi K_S$



# Belle Results for $b \rightarrow sss$

#### **BELLE-CONF-0225**



#### More CP channels: $B \rightarrow D^{*+}D^{*-}$



# CP Composition of $B^0 \rightarrow D^{*+}D^{*-}$

> Measure small CP odd fraction (corrected for acceptance):

 $R_{\perp}$  = 0.07 ± 0.06 (stat) ± 0.03 (syst)





# The PDF



3 parameters:  $|\lambda_{+}|, \operatorname{Im} \lambda_{+}, |\lambda_{\perp}| = 1, \operatorname{Im} \lambda_{\perp} = -0.741, K$ since *CP*-odd component small



# CP Asymmetry Fit Results





# Testing the Origins of CPV





CP Violation in 
$$B^0 \rightarrow \pi^+\pi^-$$
 Decays

Decay distributions  $f_+(f_-)$  when tag =  $B^0(\overline{B^0})$ 

$$f_{\pm}(\Delta t) = \frac{\Gamma}{4} e^{-\Gamma \Delta t} [1 \pm S_{f_{CP}} \sin \Delta m_d \Delta t \mp C_{f_{CP}} \cos \Delta m_d \Delta t]$$

For single weak phase from tree diagram

$$\lambda \equiv \frac{q}{p} \frac{\overline{A_f}}{A_f} = \eta_f e^{-2i(\beta + \gamma)} = \eta_f e^{2i\alpha}$$

$$C_{\pi\pi} = 0, S_{\pi\pi} = \sin 2\alpha$$

With additional weak phase from penguin diagram

 $|\lambda| \neq 1 \Rightarrow$  must fit for direct *CP* Im  $(\lambda) \neq sin2\alpha \Rightarrow$  need to relate asymmetry to  $\alpha$ 

$$C_{\pi\pi} \neq 0, S_{\pi\pi} = \sin 2\alpha_{eff}$$



# Competing Amplitudes for $B \rightarrow h^{+}h^{-}$





# Analysis Overview

#### > Analysis issues: charmless two-body B decays

- Rare decays! BR ~  $10^{-5}$ - $10^{-6}$   $\rightarrow$  need lots of data (*B* Factories)
- Large background from  $e^+e^- \rightarrow q\overline{q} \rightarrow$  need background suppression
- Ambiguity between  $\pi$  and  $K \rightarrow$  need excellent PID (DIRC or ACC)
- > CP analysis issues:
  - Need to determine vertex position of both B mesons  $\rightarrow$  standard vertex separation algorithms
  - Need to know the flavor of "other"  $B \rightarrow$  standard tagging algorithms
- > Analysis proceeds at BABAR in two steps:
  - Use kinematic, topological, and PID information in a global ML fit to extract yields for  $\pi\pi$ ,  $K\pi$ , and KK decays, as well as the asymmetry  $A_{K\pi}$ 
    - Exclude vertexing & tagging information to avoid systematic error
  - $_{0}$  Add vertexing and tagging information to extract  $S_{_{\pi\pi}}$  and  $\mathcal{C}_{_{\pi\pi}}$ 
    - + Yields and  $A_{K\!\pi}$  fixed to result of the first fit

**Kinematics** 



Aug 5-7, 2002

D.MacFarlane at SSI 2002

Pion mass assumed for all

# **Background Suppression**



particles in the event:

- |cos(θ<sub>s</sub>)| < 0.8, removes 83%</li>
   bkg, 20% signal
- Define Fisher discriminant F derived from momentum flow in the event
  - Used directly in the ML fit





# **Branching Fraction Fits**

Projections in  $m_{\text{ES}}$  and  $\Delta E$ 

26070 two-prong candidates (97% background, mostly continuum)

BF Likelihood includes PDFs for:  $m_{ES}$ ,  $\Delta E$ , Fisher,  $\theta_c$ for + & - tracks





BABAR

81.3 fb<sup>-1</sup>

# **Branching Fraction Results**

Preliminary

| Mode                              | Yield         | BR [10-6]           | Α <sub>CP</sub> (Kπ) |
|-----------------------------------|---------------|---------------------|----------------------|
| $B^{0}  ightarrow \pi^{+}\pi^{-}$ | <i>157±19</i> | <i>4.7±0.6±0.2</i>  |                      |
| $B^0 \rightarrow K^+ \pi^-$       | <i>589±30</i> | <i>17.9±0.9±0.7</i> | -0.102±0.050±0.016   |
| $B^0 \rightarrow K^+ K^-$         | <i>1±8</i>    | <0.6 [90%CL]        |                      |

$$\boldsymbol{\mathcal{A}}_{\boldsymbol{\mathcal{K}}\pi} \equiv \frac{\Gamma(\boldsymbol{\bar{B}^{o}} \to \boldsymbol{\mathcal{K}}^{-}\pi^{+}) - \Gamma(\boldsymbol{B}^{o} \to \boldsymbol{\mathcal{K}}^{+}\pi^{-})}{\Gamma(\boldsymbol{\bar{B}^{o}} \to \boldsymbol{\mathcal{K}}^{-}\pi^{+}) + \Gamma(\boldsymbol{B}^{o} \to \boldsymbol{\mathcal{K}}^{+}\pi^{-})} \sim \left| \frac{\boldsymbol{\boldsymbol{\mathcal{P}}}}{\boldsymbol{\boldsymbol{\mathcal{T}}}} \right| \sin \gamma \sin \delta$$

BABAR-PUB-02/009, hep-ex/0207055



BABAR

81.3 fb<sup>-1</sup>

# Two-Body Tagged Sample





# CP Asymmetry Results from BABAR



# Crosschecks

#### > Inspect $\pi\pi$ -selected sample

- 2-param fit consistent with full fit
- Asymmetry vs. m<sub>ES</sub>
  - Yields consistent with measured value of  $C_{\pi\pi}$ , which do not suggest large direct *CP* violation
- $_{0}$  Toy MC generated over all allowed values of  $S_{\pi\pi}$  and  $C_{\pi\pi}$ 
  - Expected errors consistent with data
  - No significant bias observed
- Validated in large samples of signal and background MC events
- Systematic errors dominated by uncertainty in PDF shapes





# Belle Signal for $B \rightarrow \pi^+ \pi^-$

Aug 5-7, 2002



D.MacFarlane at SSI 2002

**BFLLF** 

41.8 fb<sup>-1</sup>

53

### $B \rightarrow \pi^{+}\pi^{-}$ Time Distributions



 $B \rightarrow \pi^{+}\pi^{-}$  Fit Result



# Crosscheck with $B \rightarrow K^+\pi^-$ Sample



Comparison of Results



#### Interpretation?





# **PEP-II Luminosity Projections**









#### Projections for CP Asymmetry Measurements

| Some                 | rough est         | timates                                |                                         |                                         |                                        |
|----------------------|-------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| Param.               | Channel           | σ(stat)/σ(syst)<br>56 fb <sup>-1</sup> | σ(stat)/σ(syst)<br>0.5 ab <sup>-1</sup> | σ(stat)/σ(syst)<br>2.0 ab <sup>-1</sup> | σ(stat)/σ(syst)<br>10 ab <sup>-1</sup> |
| sin2β                | J/ψK <sub>S</sub> | 0.11 / 0.04                            | 0.037 / 0.015                           | 0.018 / 0.015                           | 0.009 / 0.015                          |
|                      | Golden            | 0.09 / 0.04                            | 0.030 / 0.015                           | 0.015 / 0.015                           | 0.007 / 0.015                          |
|                      | D*D*              | 0.45 / 0.06                            | 0.15 / ?                                | 0.08 / ?                                | 0.034 / ?                              |
| sin2α <sub>eff</sub> | $\pi^+\pi^-$      | 0.37 / 0.07                            | 0.12 / 0.03                             | 0.06 / ?                                | 0.03 /?                                |
| C <sub>ππ</sub>      |                   | 0.29 / 0.07                            | 0.10 / 0.03                             | 0.05 / ?                                | 0.02 /?                                |

o Expression of Interest at KEK for 10<sup>35</sup> machine in spring 2002

- o Ongoing workshops to examine this or higher luminosity options
- o Snowmass 2001 study of 10<sup>36</sup> concept and physics capability
  - Aim to be competitive and complementary to LHCb, BTeV on time scale of end of the decade
  - Physics case still being explored; still very early days in the exploration of these possibilities
  - Requires completely new vacuum and rf system, mostly new detector (current technologies cannot handle backgrounds)



#### Future Tests of the Standard Model

#### > Assumes |Vcb| ~ 3% and |Vub| ~ 10%

- Much experimental and theoretical work underway to achieve this
  - New results on inclusive/exclusive semileptonic decays
  - Will be entering an era of very large tagged samples
- > Assumes  $\Delta m_s$  known to <1% from Tevatron in 2004?





- Now in the era of B Factories, with a renaissance of experimental and theoretical activity in B physics
  - Data samples are 5 times larger than CLEO; will be 10 times larger within a few years

Motivation for these and upcoming facilities is to provide a definitive test of CP violation in the Standard Model

> July 2001 saw the beginnings of this program

Unambiguous observation of [ CP violation in the B system

July 2002: Textbook plots!

 $\sin 2\beta = 0.734 \pm 0.055$ World average dominated by

**BELLE and BABAR** 

But...still working towards a definitive systematic test of Standard Model expectations and constraints



# Bibliography: Lecture 3

- 1. [sin2β] Belle Collab, PRL **86**, 2509 (2001)
- 2. [sin2β] Belle Collab, PRL **87**, 091802 (2001)
- 3.  $[sin 2\beta]$  Belle Collab., hep-ex/0202027, to appear in PRD
- 4.  $[sin 2\beta]$  Belle Collab., hep-ex/0207098, submitted to ICHEP2002
- 5. [sin2β] BABAR Collab., PRL 86, 2515 (2001)
- 6. [sin2β] BABAR Collab., PRL 87, 091801 (2001)
- 7. [sin2 $\beta$ ] BABAR Collab., hep-ex/0201020, to appear in PRD
- 8. [sin2β] BABAR Collab., hep-ex/0203007, submitted to Moriond2002
- 9. [sin2β] BABAR Collab., hep-ex/0207042, submitted to PRL and ICHEP2002
- 10. [phi-KS] Belle Collab., BELLE-CONF-0225, submitted to ICHEP2002
- 11. [phi-KS] BABAR Collab., hep-ex/0207070, submitted to ICHEP2002
- 12. [D\*D\*] BABAR Collab., hep-ex/0207072, submitted to ICHEP2002
- 13. [h+h-] BABAR Collab, PRD 65, 051502 (2002)
- 14. [h+h-] Belle Collab., PRL 89, 071801 (2002)
- 15. [h+h-] BABAR Collab., hep-ex/0207055, submitted to PRL
- 16. Snowmass 2001, SuperBABAR Report, SLAC-PUB-8970
- 17. Belle Collab., SuperKEKB EOI, http://belle.kek.jp/~yamauchi/EoI.ps.gz

