Lecture 2: Time-Dependent Measurements with Flavor and CP Samples

- Reconstruction of B meson samples
- Lifetimes and B^o oscillation measurements with flavor eigenstate decay

Experimental Technique for B Factories

Main Variables for B Reconstruction

For exclusive B reconstruction, two nearly uncorrelated kinematic variables are used:

$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$
Signal at $\Delta E \sim 0$

"Energy-
substituted
mass"
$$M_{ES} = \sqrt{(E_{beam}^{*})^{2} - (\mathbf{p}_{B}^{*})^{2}}$$
Signal at $m_{ES} \sim m_{B}$

$$(E_{B}^{*}, \mathbf{p}_{B}^{*}), E_{beam}^{*}$$
B candidate (energy, 3-momentum) and

beam energy in $\Upsilon(4S)$ frame

Resolutions

$$\sigma_{\Delta E}^{2} = \sigma_{beam}^{2} + \sigma_{E}^{2} \sim \sigma_{E}^{2} \qquad \sigma_{\Delta E}^{2} \sim 10 - 40 \text{ MeV}$$

$$\sigma_{m_{ES}}^{2} = \sigma_{beam}^{2} + \left[\frac{p}{m_{B}}\right]^{2} \sigma_{p}^{2} \sim \sigma_{beam}^{2} \qquad \sigma_{m_{ES}}^{2} \sim 2.6 \text{ MeV/c}^{2}$$

* If σ_F were zero, the variables would be fully correlated; however, σ_F is typically at least 5 times larger than σ_{beam} and so dominates $\Delta {\pmb{E}}$

Example for Hadronic B Decays

Continuum Background Suppression

Separate 2-jet continuum from spherical BB events via event shape variables

Inclusive Open Charm States

Select intermediate mesons using either mass or mass difference:

> After selection, candidates are constrained to nominal masses

Inclusive Charmonium Signals

Golden Sample: (cc̄)K_s CP Eigenstates

Selecting candidates for $B \rightarrow J/\psi K_L$

> K_L detected by nuclear interactions in EMC or IFR

- EMC neutral clusters with energy between 0.2 and 2.0 GeV
 - Veto clusters forming π^{0} s with any other photon (E_{γ} > 30 MeV)
 - Remove clusters (E > 1 GeV) containing two distinct bumps
- IFR neutral clusters are 2 or more RPC layers that are unmatched to any projected charged track
- Only able to determine angle of $K_{\rm L}$ wrt interaction point, not energy

> B candidates formed from mass-constrained $J/\psi \rightarrow I^{+}I^{-}$ and K_{L} candidates

• Since there should be missing momentum along K_L direction, cut on difference between observed and expected

• Use cuts on $J/\psi \rightarrow //$ helicity angle ($\sin^2 \theta_h$ for signal) and *B* candidate polar angle ($\sin^2 \theta$ wrt to *z*-axis)

Final Candidate Selection

Apply constraint of known m_B mass & K_L direction d_{KL} to determine momentum p_{KL}

$$m_{\mathcal{B}}^{2} = \left(\mathcal{E}_{\mathcal{J}/\psi} + \sqrt{m_{\mathcal{K}_{L}}^{2} + p_{\mathcal{K}_{L}}^{2}} \right)^{2} - \left(\bar{p}_{\mathcal{J}/\psi} + p_{\mathcal{K}_{L}} \bar{d}_{\mathcal{K}_{L}} \right)^{2}$$

Search for signal in the one remaining variable expressed as:

CP Eigenstate Sample: $B \rightarrow J/\psi K_L$

One More Mode for CP Sample

Angular Analysis at BABAR

Measurement of B⁰ and B⁺ Lifetime

3. Reconstruct inclusively the vertex of the "other" B meson (B_{TAG})

- 1. Fully reconstruct one B meson in flavor eigenstate (B_{REC})
- 2. Reconstruct the decay vertex

4. Compute the proper time difference Δt 5. Fit the Δt spectra

B-Lifetimes: Time Distributions

D.MacFarlane at SSI 2002

Vertex and Δz Reconstruction

Result: High efficiency (97%) and $\sigma(\Delta z)_{rms} \sim 180 \mu m$ versus $\langle \Delta z \rangle \sim \beta \gamma c\tau = 260 \mu m$

Conversion from Δz to Δt

Proper time difference:
$$\Delta t = t_{rec} - t_{tag} = m_{\beta} \left[\frac{Z_{rec}}{p_{z,rec}} - \frac{Z_{tag}}{p_{z,tag}} \right]$$

where t_{rec} and t_{tag} are in different frames

Boost Approximation Neglect p_{B}^{*} , take $p_{z,rec} = p_{z,tag} \approx \langle p_{\Upsilon(4S),z} \rangle$: $\Delta t = \frac{\Delta z}{\beta \gamma c}$

Since one *B* is fully reconstructed and two *B* mesons are correlated: $\Delta z = \beta \gamma \gamma_{rec}^{*} c(t_{rec} - t_{tag}) + \gamma \beta_{rec}^{*} \gamma_{rec}^{*} \cos \theta_{rec}^{*} c(t_{rec} + t_{tag})$

Improved Boost Approximation Since $\langle \cos \theta_{rec}^* \rangle = 0$, $\Delta t = \frac{\Delta z}{\beta \gamma \gamma_{rec}^* c}$ 0.2% effect

Do not know ($t_{rec} + t_{tag}$), but can compute Δt average event-by-event: $\langle t_{rec} + t_{tag} \rangle_{\Delta t} = \tau_{\mathcal{B}} + |\Delta t|$

Average τ_B Approximation ΔZ

$$= \beta \gamma \gamma_{\rm rec}^{\star} \mathcal{C} \Delta \mathbf{t} + \gamma \beta_{\rm rec}^{\star} \gamma_{\rm rec}^{\star} \cos \theta_{\rm rec}^{\star} \mathcal{C} (\tau_{B^0} + t)$$

Improves resolution by 5% in quadrature

Actual Δt Signal Resolution Function

Empirical Models with parameters fit to data: Gaussian convolved with an exponential [lifetime] or Triple Gaussian [mixing, CP]

Effect of Charm Tracks on Δt

Gaussian-Exponential *At* Resolution Model

Motivated by inclusion of charm decay products in determination of B_{tag} vertex, creating a small bias in the mean residual Δt distribution

$$R(\delta t; \hat{a}) = f \times G(0, S\sigma_{\Delta t}) + Core Gaussian$$

$$(1 - f) \times G(0, S\sigma_{\Delta t}) \otimes E(t\sigma_{\Delta t}) \qquad Gaussian convolved with exponential$$
where $\delta t = \Delta t - \Delta t_{true}$

$$Event-by-event uncertainties$$
Parameters: $\hat{a} = \{0.69 \pm 0.07, 1.21 \pm 0.07, 1.04 \pm 0.24\}^{\Delta t}$

f = fraction in core Gaussian component
 S = scale factor for estimated event-by-event errors
 κ = effective lifetime for charm bias component

Outlier component (measurement error not applicable) added explicitly to PDF used in likelihood fit with one additional free parameter $f_{outlier}$

$$f_{sig,outlier} = 0.2^{+0.2}_{-0.3}$$
%, $f_{bk,outlier} = 0.2^{+0.2}_{-0.3}$ %

Method for Extracting Lifetime

Global unbinned maximum likelihood technique

- Includes probability-density functions (PDFs) for signal & backgrounds
- Incorporates model for Δt resolution function for signal & background

Primary advantages:

- Incorporates all correlations between parameters describing dataset
- Extracts maximum statistical precision for desired result

Cautions:

- Need to build reasonable model that incorporates physical correlations
- Need to thoroughly test the model with Monte Carlo simulation to verify complete understanding

Likelihood Function for Lifetime Fits

Signal model:
$$H_{sig,i} \text{ for } f_{sig,i} \text{ for$$

Likelihood Function for Lifetime Fits

Signal model:	Two single-sided exponentials convolved with signal Gaussian resolution function		
Background model:	Prompt and lifetime components convolved with		
	separate background Gaussian resolution function		

Outlier model: Gaussian with zero mean and fixed 10 ps width

Probability Density Function (PDF): Assign probabilities for individual events to be signal $(p_{sig,i})$ or background $(1 - p_{sig,i})$, based on observed m_{ES} value and a separate global fit to the m_{ES} distribution for the sample

Likelihood Function:

Sum PDFs for charged and neutral samples for a combined fit with a total of 19 free parameters

$$\begin{aligned} \textbf{Likelihood Function for Lifetime Fits} \\ \text{Signal model:} & \mathcal{H}_{\text{sig,i}}(\Delta t_i, \sigma_{\Delta t,i}; \tau_{B}, \hat{a}) = \frac{e^{-/\Delta t_i//\tau_{B}}}{2\tau_{B}} \otimes \mathcal{R}(\Delta t_i; \hat{a}) \\ \mathcal{H}_{\text{bk,i}}(\Delta t_i, \sigma_{\Delta t,i}; f_{bk,0}, \tau_{bk}, \hat{b}) = \\ & \left[f_{bk,0} \delta(\Delta t_i) + (1 - f_{bk,0}) \frac{e^{-/\Delta t_i//\tau_{bk}}}{2\tau_{bk}} \right] \otimes \mathcal{R}(\Delta t_i; \hat{b}) \\ \text{Outlier model:} & \mathcal{O}_{\text{outlier,i}}(\Delta t_i) = \mathcal{G}(0, 10 \text{ ps}) \\ \text{Probability Density}_{\text{Function (PDF):}} & \mathcal{P}_i = \mathcal{P}_{sig,i} \left[(1 - f_{sig,outlier}) \mathcal{H}_{sig,i} + f_{sig,outlier} \mathcal{O}_{outlier,i} \right] \\ \text{Likelihood Function} & \left(1 - \mathcal{P}_{sig,i} \right) \left[(1 - f_{bk,outlier}) \mathcal{H}_{bk,i} + f_{bk,outlier} \mathcal{O}_{outlier,i} \right] \\ \text{In } \mathcal{L} = \sum_{i0} \ln \mathcal{P}_{i0}(\Delta t_i, \sigma_{\Delta t,i}, \mathcal{P}_{sig,i}; \tau_{B^0}, \hat{a}, \hat{b}_0, f_{sig,outlier}^0, f_{bk,outlier}^0, f_{bk,0}^0, \tau_{bk}^0) + \\ & \sum_{i+1} \ln \mathcal{P}_{i+}(\Delta t_i, \sigma_{\Delta t,i}, \mathcal{P}_{sig,i}; \tau_{B^+}, \hat{a}, \hat{b}_+, f_{sig,outlier}, f_{bk,outlier}, f_{bk,0}^+, \tau_{bk}^+) \\ \text{Aug 5-7, 2002} & \text{D.MacFarlane at SSI 2002} \end{aligned}$$

Signal and Background Probabilities

B-Lifetime Measurements

$$\begin{split} \tau_{_{B^0}} = & 1.546 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_{_{B^+}} = & 1.673 \pm 0.032 \pm 0.023 \text{ ps} \\ \tau_{_{B^+}} \, / \, \tau_{_{B^0}} = & 1.082 \pm 0.026 \pm 0.012 \end{split}$$

BABAR PRL 87, 201803 (2001)

(error PDG2000 ~ 0.03 ps, stat+syst)

- Good agreement with previous lifetime measurements
- Excellent control of the time resolution function (parameterization, tails)

B-Lifetime Measurements

Measurement of B^oB^o Mixing

6. Fit the Δt spectra of mixed and unmixed events

Methods for B Flavor Tagging

Many different physics processes can be used

Flavor Tagging for Mixing Study

Use charge correlations with decay products to define two physics categories

- "Kaon" $B^0 \to \overline{D}X, \overline{D} \to K^+X$ No conflicting Lepton tag, $\sum_{kaons} q_i \neq 0$
- Multivariable techniques used to combine PID, kinematic variables, correlations, event information
 - e.g., primary lepton without PID, soft pions from D* decays $B^0 \rightarrow D^{*-}X^+, D^{*-} \rightarrow \overline{D}^0(\pi_c^-)$

 Multivariable analysis with neural network techniques: "NT1", "NT2" categories

Electron ID at BABAR

- Match track to EMC cluster
- $0.89 < E_{EMC}/p < 1.2$
- EM shower shape requirements
- DCH dE/dx and DIRC
 Cherenkov angle consistent
 with electron hypothesis

eff e=91%, π misid=0.13%

Aug 5-7, 2002

Electron ID at Belle

- Match track to ECL cluster
- E_{ECL}/p ratio requirement
- EM shower shape requirements, trackcluster matching
- DCH dE/dx, TOF, ACC consistent with electron hypothesis

eff e=94%, π misid=0.5%

Muon ID at BABAR

Muon ID at Belle

Aug 5-7, 2002

Flavor Tagging Performance in Data

The large sample of fully reconstructed events provides the precise determination of the tagging parameters required in the *CP* fit

Tagging category	tag	Fraction of aged events ε (%)	Wrong tag fraction w (%)	Mistag f differei (%	iraction nce∆w)	Q = ε(1-2w)² (%)
Lepton		10.9 ± 0.3	<i>9.0 ± 1.4</i>	0.9 :	± 2.2	7.4 ± 0.5
Kaon		35.8 ± 1.0	17.6 ± 1.0	-1.9 -	± 1.5	15.0 ± 0.9
NT1	/	7.7 ± 0.2	22.0 ± 2.1	5.6 ±	3.2	2.5 ± 0.4
NT2		13.8 ± 0.3	35.1 ± 1.9	-5.9 1	2.7	1.2 ± 0.3
ALL /		68.4 ± 0.7				26.1 ± 1.2
est "efficiend	сү"	Error on s the "qualit σ	in2 β and Δm_{d} dependent of the second secon	end on ox. as:	Smalle	est mistag fracti BABAR 29.77 fb ⁻¹ 1
Aug 5-7, 20	02	D.	MacFarlane at SSI 20	02		40

B-Mixing Analysis: Time Distributions

 ω is the flavor mistag probability $R(\Delta t)$ is the time resolution function

Triple-Gaussian *At* Resolution Model

 $R(\delta t; \hat{a}) = f_{core} \times G(\mu_{core}, \sigma_{core}) +$ Core Gaussian $f_{tail} \times \mathcal{G}(\mu_{tail}, \sigma_{tail}) +$ **Tail Gaussian** $f_{outlier} \times G(\mu_{outlier}, \sigma_{outlier})$ Outlier Gaussian $f_{core} = (1 - f_{tail} - f_{outlier})$ Bias $\begin{cases} \mu_{core} = b_{core,c} \sigma_{\Delta t} \\ \mu_{tail} = b_{tail} \sigma_{\Delta t} \\ \mu_{outlier} = 0 \end{cases}$ Parameters: $\hat{a} = \{f_{tail}, f_{outlier}, S_{core}, b_{core}, b_{tail}\}$ f = fractions in tail and outlier Widths $\begin{cases} \sigma_{core} = S_{core} \sigma_{\Delta t} \\ \sigma_{tail} = S_{tail} \sigma_{\Delta t} \\ \sigma_{outlier} = 8 \text{ ps} \end{cases}$ 5 = scale factor for estimated eventby-event errors **b** = bias factor due to inclusion of charm products in tag vertex Event-by-event uncertainties

Correlation: $\sigma(\Delta t)$ and residual Δt bias

Yet another correlation!

Meas./Pred. Mistag Ratio

Mystery:

Tests of likelihood fit with full Monte Carlo shows bias of +0.007 \pm 0.003 for $\Delta m_{\rm d}$ (about 40% of statistical error!)

*p*_t spectrum of wrong-sign kaons softer than those in correct-tag processes

But: $\sigma(\Delta t) \propto 1 / \sum p_t^2$

Systematic difference in p_t leads to correlation

Fit Results for Signal Resolution Parameters

	Run 1	Run 2	
S _{core}	1.37 ± 0.09	1.18 ± 0.11	
b _{core} lepton	0.06 ± 0.13	-0.04 ± 0.16	
b _{core} kaon	-0.22 ± 0.08	-0.25 ± 0.09	Non-zero bias for kaons
b _{core} NT1	-0.07 ± 0.15	-0.45 ± 0.21	
b _{core} NT2	-0.46 ± 0.12	-0.20 ± 0.16	
b _{tail}	-5.0 ± 4.2	-7.5 ± 2.4	
f _{tail}	0.014 ± 0.020	0.015 ± 0.010	
f outlier	0.008 ± 0.004	0.000 ± 0.014	

Additions to the Likelihood Function

2. Allow for prompt and non-prompt background components

Adds fractions for each tagging category, effective lifetime for non-prompt component, and "effective dilutions" for both

4+1+8 parameters

Blind Analyses

Analyses were done "blind" to eliminate possible experimenters' bias

- In general, measurements of a quantity "X" are done with likelihood fits - blinding achieved by replacing "X" with "X+R" in likelihood fits
 - R is drawn from a Gaussian with a width a few times the expected error
 - Random number sequence is "seeded" with a "blinding string"
 - The reported statistical error is unaffected
 - Allows all systematic studies to be done while still blind

∆m_d Likelihood Fit

Combined unbinned maximum likelihood fit to Δt spectra of mixed and unmixed events in the *B* flavor sample

Fit Parameters	#	Main Sample
∆m _d	1	Signal
Mistag fractions for B^o and \overline{B}^o tags	8	Signal
Signal resolution function	2x8 *	Signal
Description of background Δt	5+8	Sidebands
Background <i>At</i> resolution	2x3 *	Sidebands
B lifetime from PDG 2002	0	τ _B = 1.548 ps
Total parameters	44	

✓ All ∆t parameters extracted from data
 ✓ Correct estimate of the error and correlations

Likelihood Function for Mixing Fits

•	1+2×	Signal model: (8+8 parameters	PDF with Δm_d [1] for mixed and unmixed events convolved with triple Gaussian signal resolution function [8] for 2 periods of alignment. Dilutions and dilution differences [8] are also incorporated.	
	Bac	kground model:	Prompt and lifetime components [5] for mixed and	
5+2x3+8 parameters		(3+8 parameters	unmixed samples convolved with a common background double Gaussian resolution function [3] for 2 periods of alignment. Separate dilutions and dilution differences incorporated [8].	
		Outlier model:	Incorporated into resolution functions as Gaussian, with zero mean and fixed 8 ps width	
F	Prob	ability Density Function (PDF):	Assign probabilities for individual events to be signal $(p_{sig,i})$ or background $(1 - p_{sig,i})$, based on	
obs m _{Es}			observed $m_{\rm ES}$ value and a separate global fit to the $m_{\rm ES}$ distribution for the sample	
	Likel	ihood Function:	Sum PDFs for mixed and unmixed samples for a combined fit with a total of 44 free parameters	

Mixing with Hadronic Sample

Precision measurement consistent with world average

$$\Delta m_d = (0.516 \pm 0.016_{(stat)} \pm 0.010_{(syst)}) \text{ ps}^{-1}$$

BABAR PRL 88, 221802 (2002)

Mixing Asymmetry with Hadronic Sample

Systematic Errors on Δm_d

	σ[Δ m_d]
Description of background events	0.004
Background fractions, sideband extrapolation	
Background At structure and resolution	
Peaking B+ background	
At resolution and detector effects	0.005
Silicon detector residual misalignment	
<i>∆t resolution model</i>	
$\sigma(\Delta t)$ requirement	
Fit bias correction and MC statistics	0.003
Fixed lifetime from PDG2000 *	0.006
Total	0.010

* Now improved with PDG2002

Mixing in Hadronic Modes at Belle

Measurement of $sin2\beta$

Time-Dependent CP Asymmetries

Time-dependence of $B^{\circ}-\overline{B}^{\circ}$ mixing

Use the large statistics B_{flav} data sample to determine the **mistag probabilities** and the parameters of the **time-resolution function**

Summary

Precision measurements of lifetimes and BO oscillations have been performed at the B Factories

- Require the development of all techniques for B reconstruction, determination of vertex separation, tagging of the recoil B state at decay, unbinned maximum likelihood fitting and validation procedures
- Results are in excellent agreement with previous results and represent some of the single most-precise measurements available

 $\Delta m_{\rm d}$ = 0.516 ± 0.016 (stat) ± 0.010 (syst) ps⁻¹

BABAR PRL 88, 221802 (2002)

 $\Delta m_{\rm d}$ = 0.528 ± 0.017 (stat) ± 0.011 (syst) ps⁻¹

BELLE preprint-02/020, hep-ex/0207022, to appear in PLB

> Tomorrow

• Apply tools to measurement of *CP* violation in neutral *B* decays

Bibliography: Lecture 2

- 1. [lifetime] BABAR Collab., B.Aubert et al., PRL 87, 201803 (2001)
- 2. [lifetime] Belle Collab., K.Abe et al., PRL 88, 171801 (2002)
- 3. [mixing] BABAR Collab., B.Aubert et al., PRL 88, 221802 (2002)
- 4. [mixing] Belle Collab, T.Tomura et al., hep-ex/0207022, to appear in PLB
- 5. [mixing] BABAR Collab., B.Aubert et al., hep-ex/0201020, to appear in PRD

