Mixing and Time-Dependent CP Asymmetries in e^+e^- Annihilation

David B. MacFarlane UC San Diego

Outline

> Lecture 1

- Requirements for time-dependent CP violation measurements and implementation at the asymmetric energy e^+e^-B Factories
- \circ $\Upsilon(4.5)$ as a source and design of BABAR and Belle detectors

Lecture 2

- Reconstruction of B mesons
- Determination of proper decay time differences and measurement of B lifetimes
- Methods for tagging the state of the recoil B meson at time of its decay and measurement of the B^0 oscillation frequency

> Lecture 3

- CP asymmetries in the golden charmonium modes
- Measuring $\sin 2\beta$ in other channels
- Asymmetries in 2-body neutral modes
- Brief word on future prospects and plans

Lecture 1: Asymmetric Energy B Factories and Their Detectors

- Requirements for time-dependent asymmetry measurements at the Y(4S)
- Brief review of PEP-II and KEKB colliders
- Review of design and performance of BABAR and Belle detectors, with emphasis on vertexing and PID

Seeds of an Idea: B Lifetimes

Isolate samples of high-p_T leptons (155 muons, 113 electrons) wrt thrust axis

- \circ Measure impact parameter δ wrt interaction point
- Signed by taking thrust axis of
 b-jet as the B hadron direction

> Lifetime implies V_{cb} small

- MAC: (1.8±0.6 ±0.4) ps
- Mark II: (1.2±0.4 ±0.3) ps
- > Integrated luminosity at
 29 GeV:
 - 109 (92) pb⁻¹ ~ 3,500 bb
 pairs

MAC, PRL **51**, 1022 (1983) MARK II, PRL **51**, 1316 (1983)

Seeds of an Idea: B⁰B⁰ Oscillations

> Reconstructed Y(45) event

$$\begin{split} &\Upsilon(4S) \to B^{0} \bar{B^{0}} \to B_{1}^{0} B_{2}^{0} \\ &B_{1}^{0} \to D_{1}^{*-} \mu_{1}^{+} \nu_{1}, \ D_{1}^{*-} \to \bar{D^{0}} \pi_{1}^{-} \\ &B_{2}^{0} \to D_{2}^{*-} \mu_{2}^{+} \nu_{2}, \ D_{1}^{*-} \to D^{-} \pi^{0} \end{split}$$

- Time-integrated 21% mixing rate
 - 25 (270) like (opposite) sign dilepton events
 - 4.1 lepton-tagged semileptonic B decays

Integrated Y(45) luminosity 1983-87:

• 103 pb⁻¹ ~ 110,000 *B* pairs

ARGUS, PL B **192**, 245 (1987)

Expect CP Violation in the B System

- CPV through interference of decay amplitudes
- CPV through interference of mixing diagram
- CPV through interference between mixing and decay amplitudes

Directly related to CKM angles for single decay amplitude

Golden Channel: $B^0 \rightarrow J / \psi K_{S'}^0$

 $\begin{aligned} \mathcal{CP} \text{ parameter} \\ \mathbf{Im} \, \lambda_{b \to c\bar{c}\bar{s}} &= \eta_{f_{CP}} \, \mathbf{Im} \left\{ \underbrace{\frac{V_{cb}V_{cs}^{*}}{V_{cb}^{*}V_{cs}}}_{V_{cb}^{*}V_{cs}} \times \underbrace{\frac{V_{tb}V_{td}^{*}}{V_{tb}^{*}V_{td}}}_{V_{b}^{*}V_{td}} \times \underbrace{\frac{V_{cd}^{*}V_{cs}}{V_{cd}^{*}V_{cs}}}_{V_{cd}^{*}V_{cs}^{*}} \right\} &= \eta_{f_{CP}} \, \mathbf{Im} \frac{V_{td}^{*}}{V_{td}} = \eta_{f_{CP}} \, \sin 2\beta \\ \\ \mathbf{Subprocess} \quad \mathbf{B}^{0} \quad \mathbf{K}^{0} \\ \mathbf{subprocess} \quad \mathbf{mixing} \quad \mathbf{mixing} \\ \\ \mathcal{A}_{f_{CP}}(t) &= \frac{\Gamma(\bar{B}^{0}_{phys}(t) \to f_{CP}) - \Gamma(B^{0}_{phys}(t) \to f_{CP})}{\Gamma(\bar{B}^{0}_{phys}(t) \to f_{CP}) + \Gamma(B^{0}_{phys}(t) \to f_{CP})} = -\mathrm{Im} \, \lambda_{f_{CP}} \, \sin \Delta m_{d} t \end{aligned}$

CPV and Unitarity Constraints for CKM

$b \rightarrow c \overline{c} s$ channels

- \rightarrow Theoretically clean way to measure sin2 β
- Clear experimental signatures
- Relatively large branching fractions

Sample Requirements: Snowmass Study 1988

	Asymmetric Y(45) collider		
σ (bb) [nb]	1.2		
B ^o fraction	0.43		
Reconstruction efficiency	0.61		
Tagging efficiency	0.48 (I, K)		
Wrong-tag fraction	0.08		
Dilution	0.61		
Integrated Luminosity for 3σ measurement [x10 ⁴⁰ cm ⁻²] *	0.45-16		

* Assumes:

- $sin2\beta$ in range from 0.05 to 0.3,
- BF($B \rightarrow J/\psi K_S$)=5x10⁻⁴
- BF(J/ $\psi \rightarrow l^+l^-$)=0.14,
- Luminosity in units of L_{peak} at full efficiency for 10⁷ s

Conclude: Asymmetric energy e⁺e⁻ collider has discovery capability at L_{peak} ~ 3–10x10³³ cm⁻²s⁻¹ in 2–5 years of running

Aug 5-7, 2002

Time Evolution for Coherent Source

L=1 B⁰B⁰ system requires antisymmetric initial-state wave function in Y(4S) frame:

 $\mathcal{S}(t_f, t_b) = 1/\sqrt{2} \Big[\mathcal{B}_{phys}^{0}(t_f, \theta, \varphi) \overline{\mathcal{B}}_{phys}^{0}(t_b, \pi - \theta, \varphi + \pi) \Big]$

 $-\overline{B}_{phys}^{0}(t_{f},\theta,\varphi)B_{phys}^{0}(t_{b},\pi-\theta,\varphi+\pi)]\sin\theta$

 (θ, φ) are wrt e^- beam direction;

(f, b) are the forward (backward) going B meson,

with $(\theta_f < \pi/2)$ and $t_f = t_b$ until one B meson decays

Consequently B⁰B⁰ evolves coherently until one B mesons decays

- At any given time, until one of the B mesons decays, there is exactly one B^0 and one \overline{B}^0 including at time $\Delta t = t_{CP} t_{tag} = 0$
- CP/Mixing oscillation clock only starts ticking at the time of the first decay, relevant time parameter is Δt
- Half of the time the CP eigenstate B decays first ($\Delta t < 0$)

Golden Channel Asymmetry on Y (45)

Neutral B Time Evolution

For coherent source, integrated asymmetry is zero: must do a time-dependent analysis $\int_{-\infty}^{+\infty} F(\Delta t) d\Delta t = \int_{-\infty}^{+\infty} \overline{F}(\Delta t) d\Delta t$

Experimental Technique for B Factories

PEP-II Asymmetric B Factory

Located in the 2.2 km PEP tunnel at the Stanford Linear Accelerator Center

HER Cavities Region 12

8-19-97

	Design		Achieved	
	e⁻	e⁺	e⁻	e⁺
Beam energies [GeV]	9	3.1		
Currents [A]	0.75	2.14	1.05	2.14
Number of bunches	1658		830	
Luminosity [x10 ³³ cm ⁻² s ⁻¹]	3.0		4.6	
Bunch spacing [m]	1.26		2.52	
Bunch currents [mA]	0.45	1.29	1.28	2.20
Beam stored energy [kJ]	49	49	69	41
Beam power [GW]	6.7	6.7	9.4	5.6
Beam rf power [MW]	1.8	1.7	2.5	1.4

PEP-II Interaction Region

PEP-II Interaction Region

20

KEKB Storage Ring Layout

	Design		Achieved	
	e⁻	e⁺	e⁻	e⁺
Beam energies [GeV]	8	3.5		
Currents [A]	1.1	2.6	0.92	1.37
Number of bunches	5000		1223	
Luminosity [x10 ³³ cm ⁻² s ⁻¹]	10.0		7.35	
Bunch spacing [m]	1.2		2.4	
Bunch currents [mA]	0.22	0.52	0.71	1.14
Beam stored energy [kJ]	90	92	73	49
Beam power [GW]	9	9	7	5
Beam rf power [MW]	4.0	4.5	3.2	2.4

KEKB Interaction Region

BABAR Collaboration

Gathering at SLAC, July 2002

BABAR Detector

Belle Collaboration

Belle Detector

Requirements: Geometric Acceptance

Requirements: Tracking and PID

Requirements: Photons

BABAR Detector

D.MacFarlane at SSI 2002

Vertex Detector Design

> Requirements

- Transverse and longitudinal vertex resolution
 - Resolution on Δz must be small compared to oscillation distance
- Polar and azimuthal angles at IP
- [Stand-alone tracking and D* detection]
- High background tolerance and hence segmentation
- Tolerance and longevity in high radiation environment

Constraints

- IP geometry sets acceptance (magnets occlude below 350mrad)
- Shielding of SR backgrounds sets minimum radius
- Cost sets outside radius

> Implementation

- Double-sided AC-coupled silicon microstrip detectors
- Custom radiation-hard readout chip

Vertex Resolution

Vertex Resolution

PEP-II IR SR fans: LER Beam

Aug 5-7, 2002

PEP-II IR SR fans: HER Beam

KEKB Interaction Region

Silicon Vertex Detector at BABAR

- 5 Layer AC-coupled double-sided silicon detector
- Located in high radiation area
 - Radiation hard readout electronics (4-5Mrad)
- > 97% hit reconstruction efficiency
- Hit resolution ~15 µm at 90°

Completed SVT Detector

Resolutions and Efficiencies

Requirements: Low pt Tracking

Common to reconstruct $D^{*+} \rightarrow D^0\pi^+$ with very soft π^+ Advantage: Excellent resolution for mass difference Disadvantage: Small bending radius, difficult to track

Silicon Vertex Detector at Belle

Drift Chamber Design

> Requirements

- p₊ measurement over maximum possible solid angle
- 5 track parameters for secondary tracks
- Track projections onto DIRC (angle) and EMC
- dE/dx measurements for tagging (low momentum)
- Fast L1 input to tracking trigger

Constraints

- Machine elements define angular acceptance
- Outside radius balances cost (EMC) and p_{t} resolution $\sigma(p_{t}) \sim BR^{2}$

Minimize material in front of EMC, DIRC

> Implementation

- Small-cell design for large number of tracks, low momentum
- Aluminum field wires, helium-based gas to minimize multiple scattering contribution to resolution

BABAR Drift Chamber

- 40 layers of wires (7104 cells) in 1.5 Tesla magnetic field
 Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate
- Particle identification from ionization loss (7% resolution)

Belle Drift Chamber

- 50 layers of wires (8400 cells) in 1.5 Tesla magnetic field
 Helium:Ethane 50:50 gas, Al field wires, CF inner wall with cathodes, and preamp only on endplates
- > Particle identification from ionization loss (5.6-7% resolution)

Hadron PID Detector Design

> PID Requirements

- In range 0.6-2 GeV/c for kaon tagging
- Up to 4.4 GeV/c in forward direction for 2-body B decay modes

Constraints

- Inside radius set by need to maximize tracking volume; outside by cost of calorimeter
- Magnetic field limits photon detector choices in active volume
- Minimal material degradation of calorimeter performance

> Implementation

- dE/dx covers part of kaon tag spectrum
- For BABAR, novel ring-imaging Cherenkov detector (DIRC) based on quartz radiators and phototube imaging of rings
- For Belle, time-of-flight (TOF) and threshold Cherenkov counters based on low-density materials and fine-mesh phototubes in active volume (ACC)

Principle of the DIRC

- UV Cherenkov light generated in quartz with characteristic 1/β opening angle
 - Light transmitted length of bar by internal reflection, preserving angle information due to precision surfaces
- Rings projected in water-filled standoff box (best match to quartz index), where photons are detected with an array of 10K PMTs

Elements of DIRC System

D.MacFarlane at SSI 2002

Comparing Hits with Cherenkov Signature

Control samples for π and K

Kaon ID at BABAR

NN based on likelihood ratios 0 Kaon efficiency in DCH and SVT (dE/dx), and in DIRC (compare single hits with expected pattern of 0.8 cherenkov light) • > 3s K/p separation for 0.25 < 0.6 p < 3.4 GeV/cPion misidentification K eff = 85%, π misid = 5% 0.4 0.2 0 З p_{lab} (GeV/c)

Kaon Spectra from Y(45) Decays

PID System at Belle

TOF and TSC Modules

- BC408 (4 x 6 x 255 cm T x W x L)
- TOF: Fine-mesh PMT's (both ends)
- TSC = Trigger Scintillator Counter (0.5 cm T): one FM-PMT
- 64 modules (128 TOF and 64 TSC)

Aug 5-7, 2002

D.MacFarlane at SSI 2002

Measuring Kaon ID Performance

Use a kinematics selection to tag clean K,π sample

$$\mathcal{D}^{\star_{+}} \rightarrow \mathcal{D}^{0} (\rightarrow \overset{}{\mathcal{K}^{-}} \pi^{+}) \pi^{+}$$

Compute kaon probability from K and π likelihoods obtained from dE/dx TOF and ACC

Combined Performance

Kaon Spectra from Y(45) Decays

Aug 5-7, 2002

> Requirements

- Best possible energy and position resolution
 - 11 photons per (4S) event; 50% below 200 MeV in energy
- Acceptance down to lowest possible energies and over large solid angle
- Electron identification down to low momentum

Constraints

- Cost of raw materials and growth of crystals
- Operation inside magnetic field
- Background sensitivity

> Implementation

- Thallium-doped Cesium-Iodide crystals with 2 PID photodiodes per crystal for readout
- Thin structural cage to minimize material between and in front of crystals

Electromagnetic Calorimeter at BABAR

 6580 CsI(Tl) crystals with photodiode readout
 About 18 X0, inside solenoid

$$\frac{\sigma(E)}{E} = \frac{(2.32 \pm 0.03 \pm 0.3)\%}{\sqrt[4]{E}} \oplus (1.85 \pm 0.07 \pm 0.1)\%$$

Electromagnetic Calorimeter at Belle

Instrumented Flux Return/KLM

Iron assembly with RPCs at BABAR

Up to 21 layers of resistiveplate chambers (RPCs) between iron plates of flux return

- Muon identification > 800 MeV/c
- Neutral Hadrons (K_L) detection; also with EMC/ECL

Bakelite RPCs at BABAR

- Problems with QC, dark current, and stability
- Forward endcap replacement this summer; barrel in 2005

Glass RPCs at Belle

- Possible problems with neutrons in forward endcap
- Probably problems at higher background rates

Completed Detectors

PEP-II Integrated Luminosity

^{2002/07/05 18.4}

KEKB Integrated Luminosity

> Dream of exploring CP violation has now been realized

- PEP-II/BABAR and KEKB/Belle operating with high efficiency and record luminosities
- Detectors have been optimized for CP studies, with demonstrated capability for vertex separation measurement, tagging, and B meson reconstruction
- Data samples are in hand: about 88 million BB pairs at BABAR, 85 million at Belle

Luminosity at PEP-II and KEK-B is the key factor in reaching samples that are capable of decisive CP asymmetry measurements

> Tomorrow:

 How to extract lifetimes, the B⁰ oscillation frequency, and mixing-induced CP asymmetries from the time-dependent development of B mesons in these samples

Bibliography: Lecture 1

- 1. Proceedings of the Summer Study on High Energy Physics in the 1990s, ed. S.Jensen, World Scientific, 1988
- PEP-II: An asymmetric B Factory, Conceptual Design Report, SLAC-418, 1993
- 3. BABAR Letter of Intent for the study of CP violation and heavy flavor physics at PEP-II, D.Boutigny et al., ed. D.B.MacFarlane and R.Schindler, SLAC-443, June 1994
- 4. Belle Letter of Intent, M.T.Cheng et al., KEK Report 94-2, 1994
- 5. BABAR Technical Design Report, D.Boutigny et al., ed. D.B.MacFarlane, SLAC-R-457, March 1995
- 6. Belle Technical Design Report, KEK Report 95-1, 1995
- 7. KEKB B-Factory Design Report, KEK Report 95-7, 1995
- 8. "The BABAR Physics Book", D.Boutigny et al., ed. P.F.Harrison and H.R.Quinn, SLAC-R-504, Oct. 1998
- 9. BABAR Collab. B. Aubert et al., NIM A479, 1 (2002)
- 10. Belle Collab., A.Abashian et al., NIM A479, 117 (2002)

