High-Precision Nonperturbative QCD

Peter Lepage

Cornell University

Why High-Precision and Nonperturbative?

Essential for Standard Model

E.g., CKM weak interaction parameters ρ and η from:

 $B-\bar{B} \text{ mixing}$ $B \to \pi l \nu$ $K-\bar{K} \text{ mixing}$

→ Nonpert've QCD Part × Weak Int'n Part

CKM today and with 2-3% theory errors.

And with B Factories ...

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.4/77

Essential Beyond the S.M.?

Strongly coupled field theories are an outstanding challenge to all theoretical physics.

• Field theory is generic; weak coupling is not.

2 of 3 known interactions are strongly coupled: QCD, gravity.

Asymptotic freedom + logarithmic evolution

 \Rightarrow Strong coupling at low *E* and large mass hierarchies.

• E.g., in QCD:

 $\alpha_s(M_{\rm planck}) = 0.02$ and $\alpha_s(m_{\rm hadron}) \approx 1$

 $\Rightarrow m_{\text{hadron}}/M_{\text{planck}} \approx 10^{-19}.$

 \Rightarrow Strong coupling is *natural* in particle physics.

Strong coupling is possible (likely?) at the LHC and/or beyond.

- Generic at low energies in non-abelian gauge theories ...
- ... unless gauge symmetry spontaneously broken ⇒ dynamical symmetry breaking ⇒ strong coupling.
- Critical near-term need for reliable, generic techniques for strong coupling.

What is Lattice QCD?

Lattice Approximation

⇒ Fields $\psi(x)$, $A_{\mu}(x)$ specified only at grid sites; interpolate for other points.

\Rightarrow QCD \rightarrow multidimensional integration.

$$\int \mathcal{D}A_{\mu} \, \dots \, \mathrm{e}^{-\int L \mathrm{d}t} \longrightarrow \int \prod_{x_j \, \epsilon \, \mathrm{grid}} \mathrm{d}A_{\mu}(x_j) \, \dots \, \mathrm{e}^{-a \sum L_j}.$$

- \Rightarrow Millions of integration variables.
- \Rightarrow Numerical Monte Carlo integration.

N.B. Cost $\propto (1/a)^{\omega}$ where $\omega \geq 6$ implies must keep *a* as large as possible!

Fall & Rise of LQCD

- Invented in 1974; "explains" confinement.
- Stalls for almost 20 years.
 - Ken Wilson declares it dead! (1989)
- Renaissance in 1990's.
 - Perturbation theory fixed.
 - Effective field theories for c, b's.
 - Improved discretizations \Rightarrow larger *a*'s.
 - Unquenching! (2000)
- First high-prescision nonperturbative results.
 - $\alpha_s(M_Z), M_b \dots$ to few %.
 - Ken Wilson retracts. (1995)

QCD Revolution

Traditional \Rightarrow need $a \le 0.05$ fm.

New simulation $\Rightarrow a = 0.1-0.4$ fm works.

Simulation cost $\propto (1/a)^6$

 \Rightarrow new simulations cost 10²-10⁶ times less!

Quantum Field Theory on a Lattice

Approximate Derivatives

Numerical Analysis \Rightarrow

 \Rightarrow uses only ψ 's at grid sites.

N.B. Errors $\propto (pa)^n \Rightarrow \text{want } p < \mathcal{O}(1/a).$

Large $a \Rightarrow$ need *improved discretizations*.

E.g.

 $\Rightarrow a = 0.4 \text{ fm okay}?$

N.B. Need smaller *as* for large *p*.

Ultraviolet Cutoff

 $\lambda_{\min} = 2a$ is smallest wavelength.

E.g.)
$$\psi = +1 -1 +1 -1 +1$$

- \Rightarrow all quark and gluon states with $p > \pi/a$ are excluded by the lattice since $p = 2\pi/\lambda$.
- $\Rightarrow \text{ lattice QCD} \equiv \text{QCD} + \text{ lattice UV regulator} \\ \equiv \text{``real'' QCD.}$

But $\forall ps$ important in quantum field theory! (Consider ultraviolet divergences.)

Renormalization Theory \Rightarrow mimic effects of $p > \pi/a$ excluded states by adding extra *a*-dependent *local* terms to the field equations, Lagrangian, currents, etc.

$$\Rightarrow \qquad \partial \psi \rightarrow \Delta \psi + c(a) a^2 \Delta^3 \psi + \cdots$$

where

Bad News: Need a^2 corrections when a large, but *Numerical Recipes* won't tell you values of $c(a) \dots$ Good News: $p > \pi/a$ QCD is perturbative if *a small* enough (asymptotic freedom).

 \Rightarrow compute c(a) ... using perturbation theory.

Perturbation theory fills in gaps in lattice; \Rightarrow continuum results without $a \rightarrow 0!$

Asymptotic freedom in QCD \Rightarrow

- short-distance physics simple (perturbative);
- long-distance physics difficult (nonperturbative).

Lattice separates "short" from "long":

- $p > \pi/a$ QCD \rightarrow corrections $\delta \mathcal{L}$ computed in perturbation theory (determines *a*);
- $p < \pi/a$ QCD \rightarrow nonperturbative, numerical Monte Carlo integration.

Perturbation Theory

Improved discretizations and larger as — old ideas.

But perturbation theory is essential.

- \Rightarrow a must be small enough so that $p \approx \pi/a$ QCD is perturbative.
- \Rightarrow Before 1992: a < 0.05 fm.
- \Rightarrow After 1992: a < 0.4 fm works.

Test by comparing short-distance quantities from:

- perturbation theory;
- numerical Monte Carlo integration (\Rightarrow exact result).

E.g., Wilson loops:

$$W(\mathcal{C}) \equiv \langle 0|\frac{1}{3} \operatorname{Re} \operatorname{Tr} \operatorname{P} e^{-ig \oint_{\mathcal{C}} A \cdot \mathrm{d}x} |0\rangle,$$

C =small, closed path.

Running coupling constant:

LQCD Tour

Expect errors < few % from simulations with a < 0.4 fm.

Improved discretizations essential for speed and precision.

Questions:

- Do the improvements work?
- Are the simulations faster?

Gluons

Original discretization of the gluon action (Wilson, 1974) has $\mathcal{O}(a^2)$ errors:

$$\mathcal{L}_{\text{Wil}} \approx \sum_{\mu,\nu} \left\{ \frac{1}{2} \operatorname{Tr} F_{\mu\nu}^2 + \frac{a^2}{24} \operatorname{Tr} F_{\mu\nu} (D_{\mu}^2 + D_{\nu}^2) F_{\mu\nu} \cdots \right\}.$$

 $\mathcal{O}(a^2)$ error violates rotation/Poincaré invariance (due to lattice); removed by adding correction terms.

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.30/77

The standard discretization of the quark action has $\mathcal{O}(a^2)$ errors:

$$\mathcal{L}_{\text{lat}} \approx \overline{\psi} (D \cdot \gamma + m) \psi + \frac{a^2}{6} \sum_{\mu} \overline{\psi} D^3_{\mu} \gamma^{\mu} \psi + \cdots$$

 $\mathcal{O}(a^2)$ error violates rotation/Poincaré invariance; removed by adding correction term.

Test by computing

$$c^2(\mathbf{p}) \equiv \frac{E^2(\mathbf{p}) - m^2}{\mathbf{p}^2};$$

Lorentz invariance implies:

$$c^2(\mathbf{p}) = 1 \qquad \forall \mathbf{p}.$$

Alford et al (1997).

Heavy Quarks

Lattice errors $\propto (a E)^n$, $(a p)^n$ \Rightarrow need $a \ll 1/M$ where M = hadron mass.

$$B, \Upsilon \dots \implies \text{Need } a \to a/10$$
$$\implies \text{Cost} \to 10^6 \text{ cost}!$$

 \Rightarrow Impossible?

No! *b* quark is nonrelativistic:

$$\frac{v^2}{2} \approx \frac{\Delta M}{M} \approx \frac{0.5 \,\mathrm{GeV}}{10 \,\mathrm{GeV}}$$

⇒ $v^2 \approx 0.1$; ⇒ don't use Dirac; use effective field theory.

Schrödinger + $\mathcal{O}(a, a^2)$ corrections + $\mathcal{O}(v^2, v^4)$ corrections + \cdots .

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.35/77

Lattice NRQCD:

Schrödinger:
$$H_0 \sim -\frac{\mathbf{D}^2}{2M_0} + ig A_0,$$

Corrections:

$$\begin{split} \delta H &\sim -c_1 \frac{(\mathbf{D}^2)^2}{8M_0^3} \left(1 + \frac{aM_0}{2n} \right) + c_2 \frac{a^2 \sum_i \mathbf{D}_i^4}{24M_0} \\ &- c_3 \frac{g}{2M_0} \, \sigma \cdot \mathbf{B} + c_4 \frac{ig}{8M_0^2} \left(\mathbf{D} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{D} \right) \\ &- c_5 \frac{g}{8M_0^2} \sigma \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D} \right). \end{split}$$

where perturbation theory $\Rightarrow c_i = 1 + c_{i1}\alpha_s(\pi/a) + \cdots;$ \Rightarrow only two parameters: α_s and M_0 .

Davies et al. (1997).

Davies et al. (1997).

Tune two parameters to reproduce experimental data

\Rightarrow few % accurate results for M_b and $\alpha_{\overline{\text{MS}}}(M_Z)$.

Particle Data Group (2001).

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.40/77

"Unquenching"

Unquenched LQCD

"Quenched" QCD \equiv QCD without quark vacuum polarization.

- \Rightarrow 15–20% errors in most calculations;
- \Rightarrow *the* major limitation of LQCD *until 2000*.

Naive/staggered quarks + improved discretization

- ⇒ 10–100 times faster
 & smallest finite-a errors
 & best behavior in chiral limit!
- \Rightarrow high-precision (few %) LQCD possible *now!*
- \Rightarrow MILC collaboration has already produced thousands of configurations:

•
$$n_f = 3;$$

- smallest $(m_u = m_d)$ ever: $m_s \ldots m_s/5, m_s/7;$
- small as: 1/8 fm, 1/11 fm;
- large *Ls*: 2.5 fm, 3.0 fm.

Naive/Staggered Quarks

Simplest discretization of light quarks,

$$\mathcal{L} = \overline{\psi}(x)(\Delta \cdot \gamma + m)\psi(x)$$

 \Rightarrow an exact "doubling" symmetry:

$$\psi(x) \longrightarrow \tilde{\psi}(x) \equiv i\gamma_5\gamma_\rho (-1)^{x_\rho/a} \psi(x)$$
$$= i\gamma_5\gamma_\rho \exp(i x_\rho \pi/a) \psi(x).$$

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.44/77

General case:

$$\psi(x) \to \mathcal{B}_{\zeta}(x) \psi(x)$$

where

$$\mathcal{B}_{\zeta}(x) \equiv \prod_{\rho} (i\gamma_{5}\gamma_{\rho})^{\zeta_{\rho}} \exp(ix \cdot \zeta \pi/a)$$

$$(\sum_{\rho} \zeta = (1, 0, 0, 0), (0, 1, 0, 0) \dots (1, 1, 0, 0) \dots, 15 \text{ in all.}$$

 $\Rightarrow 1 \text{ field } \psi(x) \text{ creates 16 } different \text{ but } exactly \\ equivalent \text{ flavors of quark } (p \approx \zeta \pi/a)!$

16 flavors is bad!

Two traditional options:

- 1. (Wilson, SW...) Break doubling symmtry by adding $-a\overline{\psi}(D\cdot\gamma)^2\psi/2$ to \mathcal{L} ; destroys all chiral symmetry \Rightarrow small $m_{u,d}$ very difficult.
- 2. (Kogut-Susskind...) Live with the 16 flavors by inserting factors of 1/16 in strategic places.
 Preserves a chiral symmetry ⇒ small masses relatively efficient.
 - Follow option 2!

E.g., 16 equivalent B mesons constructed from a b quark and 16 flavors of u antiquark: e.g.,

$$p_u \approx (0, 0, 0, 0) \qquad \qquad p_u \approx (\pi/a, 0, 0, 0)$$

$$p_u \approx (\pi/a, 0, 0, 0) \qquad \qquad p_b \approx 0$$

Ignore all but first (equivalent) by limiting total momentum:

$$P_B \equiv p_b + p_u < \frac{\pi}{2a}.$$

 $\Rightarrow P_B$ distinguishes between flavors.

Light hadrons harder.

Bad News: Flavor-changing strong interactions —

Quarks on-shell, but different flavor

Good News: The gluon carries the largest lattice momentum, π/a ;

 \Rightarrow highly virtual and perturbative;

 \Rightarrow can remove by (local) perturbative modifications to \mathcal{L} to any order in $\alpha_s(\pi/a)$.

The new idea!

 \Rightarrow Four quark operators $+ a^2 \Delta^3$ correction as before.

 \Rightarrow Most accurate discretization.

See Lepage (1998); MILC (1999).

An amazing fact:

\Rightarrow 10–100 times faster than all other alternatives!

Domain-Wall Fermions

An approach for chiral fermions?

- Embed 4-D space-time in 5-D: (x^{μ}, s) .
- Use Wilson lattice Dirac equation in 5-D,

$$\left(D \cdot \gamma + D_s \gamma_5 - \frac{a}{2} (D^2 + D_s^2) + m(s)\right) \Psi = 0,$$

but with

• Separable \Rightarrow chiral Ψ_{\pm} , such that

$$D \cdot \gamma \Psi_{\pm} = 0,$$

localized where m(s) = 0 — domain walls:

- "Keep" only s = 0 or L solution ⇒ chiral theory
 ⇒ wide range of new applications?
- Key issue: Do the two solutions communicate?

Why are Quarks so Hard?

Anomalies!? Chiral symm. + massless quarks \Rightarrow

• Quark helicity (\pm) is Lorentz invariant.

Quantum effects (anomaly)
 ⇒ ∂ · j₅ ∝ E · B
 ⇒ n₊ - n₋ can change!

E.g., vacuum Fermi levels shift as $\mathbf{E} \cdot \mathbf{B}$ varies:

Near Future

Algorithmic Advances in 1990's

- **1992** LQCD perturbation theory.
- **1992** Effective field theory (e.g., NRQCD, Fermilab).
- **1995** Improved discretizations \Rightarrow larger a.
- **1999** Improved staggered/naive quarks:
 - $Det(D \cdot \gamma + m) > 0$ as in continuum (small *m* okay).
 - Flavor-changing perturbative \Rightarrow remove systematically.
 - Naive quarks \Rightarrow simple analyses, operators.
 - No $\mathcal{O}(a)$ errors *and* much faster unquenching!
 - \Rightarrow Lattice QCD is in revolution:
 - 100– ∞ % errors in 1990.
 - 10–20% errors today for wide range of masses, form factors ...
 - 1–3% possible now and in next few years.

High-Precision Possible Now

Few % accuracy for "gold-plated" calculations: (Cornell Workshops, 2001 and 2002)

- Masses, decay constants, semileptonic form factors, and mixing amplitudes for $D, D_s, D^*, D_s^*, B, B_s, B^*, B_s^*$, and baryons.
- Masses, leptonic widths, electromagnetic form factors, and mixing amplitudes for any meson in ψ/Υ families below D/B threshold.
- Masses, decay constants, electroweak form factors, charge radii, magnetic moments and mixing for low-lying light-quark hadrons.

High-precision \Rightarrow masses and amplitudes with at most one hadron in the initial and/or final state, for stable or nearly stable hadrons ($\Gamma < 10-20$ MeV).

- New collaboration (HPQCD):
 - M. Alford, C. Davies (Glasgow)
 - A. El-Khadra (Illinois)
 - S. Gottlieb (Indiana)
 - R. Horgan (Cambridge)
 - K. Hornbostel (SMU)
 - A. Kronfeld, P. Mackenzie, J. Simone (Fermilab)
 - P. Lepage (Cornell)
 - J. Shigemitsu (OSU)
 - H. Trottier (SFU)
 - R. Woloshyn (TRIUMF)
 - + working closely with MILC Collaboration

Uses current techniques.

- Progress driven by improved methods.
- Future pace will be much faster than pace of hardware evolution.

HPQCD Plan

Compute dozens (?) of gold-plated quantities to few percent over next few years.

- Unquenched $n_f = 6$ with improved staggered quarks.
- NRQCD and Fermilab actions for c, b quarks through v^6 .
- Actions, operators corrected through order a^2 , $1/M^2$.
- One and two-loop perturbation theory (automated).
- PC cluster is optimal (simulations, pert'n theory ...).

HPQCD Plan

Focus on B and D physics \Rightarrow maximum impact on experimental community (BaBar, Belle, CLEO...).

• Gold-plated quantities for every off-diagonal CKM element.

$$egin{array}{cccccc} V_{ud} & V_{us} & V_{ub} \ \pi
ightarrow l
u & K
ightarrow \pi l
u & B
ightarrow \pi l
u \ V_{cd} & V_{cs} & V_{cb} \ D
ightarrow l
u & D_s
ightarrow l
u & B
ightarrow Dl
u \ D
ightarrow \pi l
u & D
ightarrow Kl
u \ V_{td} & V_{ts} & V_{tb} \ \langle B_d | \overline{B}_d
angle & \langle B_s | \overline{B}_s
angle \end{array}$$

• Extensive cross-checks for error calibration: Υ , ψ , B, D, K, π

HPQCD So far...

- Automated one-loop perturbation theory.
 - $\Lambda_V / \Lambda_{\text{latt}}$ for improved gluons.
 - f_{π} and f_K , B_K , and m_s .
 - Flavor-changing in naive/staggered quarks.
 - Anisotropy and "speed of light" on anisotropic lattices.
- Tree-level spin-independent NRQCD through v^6 and spin-dependent through v^8 ; one-loop soon.
- Operator design with naive quarks.
- High- β techniques for nonperturbative perturbation theory.
- Constrained/Bayesian curve fitting.

- Very preliminary tunings/results:
 - HPQCD+MILC collaborations.

•
$$n_f = 3, a = 1/8$$
 fm.

• Tune $m_u = m_d, m_s, m_c, m_b$ and α_s using $m_{\pi}, m_K, m_{\psi}, m_{\Upsilon}$, and $\Delta E_{\Upsilon}(1P - 1S)$.

$$\Rightarrow \alpha_{\overline{MS}}(M_Z) = 0.116 \, (4)$$
$$m_s(2 \,\text{GeV}) = 80 \, (20) \,\text{MeV}$$

. . .

Errors reduced $3-4 \times$ by Fall '02.

\Rightarrow New results: (lattice QCD)/(experiment)

HPQCD+MILC: Very Preliminary

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). – p.65/77

Perturbation theory:

• Connects lattice to continuum (fills in gaps): for f_D use

$$J_{\rm cont} = Z J_{\rm latt} + a \Delta J$$

where

$$Z = 1 + c_1 \alpha_s(\mu) + c_2 \alpha_s^2 + \cdots$$

and $\mu \approx 2/a$ is typical (for α_V and $n_f = 3$).

- Current work uses 1st-order results; relative error is $\mathcal{O}(\alpha_s^2) \approx 7\%$ for a = 0.1 fm. This is the dominant error.
- Next generation will use 2nd-order results, giving relative errors of $\mathcal{O}(\alpha_s^3) \approx 1.6\%$ at a = 0.1 fm.

Finite-lattice spacing errors:

• E.g., on lattice

$$p^2 \to (\sin(pa)/a)^2 = p^2 \left(1 - \frac{(pa)^2}{3} + \cdots\right)$$

• Remove $a, a^2 \dots$ errors (improved discretizations).

- $(pa)^2/3 \approx 0.7\%$ for $p \approx 300$ MeV and a = 0.1 fm.
- $\mathcal{O}(a^2)$ improvement crucial for high-momentum form factors, and for suppressing flavor-changing interactions.

1/M errors:

- Effective field theory (e.g., NRQCD) essential for heavy quarks $\Rightarrow 1/M$ expansion.
- Current work accurate through $\mathcal{O}(1/M)$ errors:
 - $\mathcal{O}(1/M^2) \approx 2\%$ or less for f_D ;
 - $\mathcal{O}(\alpha_s/M) \approx 3.6\%$ for f_D ;
 - 3–10 times smaller for *B* mesons.
- Future work accurate through $\mathcal{O}(\alpha_s/M, 1/M^2)$; relative error is $\mathcal{O}(\alpha_s^2/M) \approx 0.9\%$.

Unquenching:

- Most past work is quenched: $m_{u,d,s} \to \infty$ for sea quarks (i.e., no vacuum polarization) \Rightarrow errors of 10–20%.
- Current simulations use realistic m_s and $m_{u,d} = m_s/5, m_s/7...$
 - Chiral perturbation theory \Rightarrow error estimates/corrections.
 - Relative errors $= \mathcal{O}(15\% \times (m_{u,d}/m_s)^2) \approx 1\%$ for $m_{u,d} = m_s/5$.
 - Complicated by flavor-changing interactions (\approx couple %?).
- Simulations with a = 0.1 fm, $n_f = 6$, $m_{u,d} = m_s/4$ require ≈ 3 months on 200-node PC cluster for 1% statistical errors.
 - Use improved staggered quarks.
 - Lots of $n_f = 3$ gluon configurations already (MILC).
 - No more quenched analyses!

HPQCD case study: $B \rightarrow \pi l \nu$

$$B \to \pi l \nu \Rightarrow V_{ub}$$
 but...

$$\begin{array}{ll} (p_l + p_{\nu})^2 \to 0 & \Rightarrow & p_{\pi} \to 2.5 \, \mathrm{GeV} \\ & \Rightarrow & \mathrm{need} \\ & & a \ll \frac{1}{2.5 \, \mathrm{GeV}} = 0.08 \, \mathrm{fm} \\ & \Rightarrow & \mathrm{computers} \ 3^7 \times \mathrm{larger.} \end{array}$$

Or use mNRQCD (moving NRQCD):

- a) Choose frame where B moves \Rightarrow share momentum between B and π .
- b) Parameterize *b*-quark's momentum

N.B. Best frame has $p_B \approx 8 \text{ GeV}$ and $p_\pi \approx k \approx \sqrt{\Lambda M_b}/2 \approx 0.8 \text{ GeV}$

mNRQCD lagrangian:

$$\mathcal{L}_{\text{mNRQCD}} = \chi^{\dagger} \left(iD_t + i\mathbf{v} \cdot \mathbf{D} + \frac{1}{2m\gamma} \left(\mathbf{D}^2 - (\mathbf{v} \cdot \mathbf{D})^2 + \sigma \cdot \mathbf{B}' \right) + \cdots \right) \chi$$

where

$$\mathbf{B}' = \gamma \left(\mathbf{B} - \mathbf{v} \times \mathbf{E} - \frac{\gamma}{\gamma + 1} \, \mathbf{v} \, \mathbf{v} \cdot \mathbf{B} \right).$$

Hashimoto and Matsufuru (1996); Sloan (1998); Foley et al (2002); c.f. HQET.
Challenge for lattice QCD

Demonstrate reliability at the level of 1-3% errors, given past history of 10-20% errors.

- Requires comparison with wide variety of highly accurate experimental data.
 - High precision \Rightarrow differentiate QCD from models.
 - Wide variety \Rightarrow independent tests of all components.
- Must test:
 - Heavy-quark actions (NRQCD, Fermilab, etc.).
 - Light-quark actions (improved stagg. quarks).
 - Gluon action.
 - High-order perturbation theory.
 - Techniques for computing spectra, form factors

A problem for lattice QCD

There is very little high-precision QCD data from experiment.

Solution: new CLEO-c experiment!

CLEO-c: High-Precision QCD

2002 Y family:

- Masses, spin splittings, widths, form factors, mixing ... to few %.
- Richest testing ground for heavy-quark actions \Rightarrow *independent* calibration/test of *b*-quark action used in *B* simulations.
- Overconstrain *b*-quark action.
- **2004/5** D, D_s mesons:
 - Leptonic, semileptonic widths and form factors to few %.
 - Calibrate LQCD on analogues of crucial *B* processes.
 - V_{cd} and V_{cs} to few %, new unitarity triangles, new physics (?).
- **2006** ψ/J family, glueball spectrum. \Rightarrow LQCD in race to *predict* CLEO-c results!

Conclusion

Superb opportunity for LQCD to have an impact on particle physics.

- LQCD essential to high-precision *B/D* physics at BaBar, Belle, CLEO-c...
- *Predicting* CLEO-c, BaBar/Belle results ⇒ much-needed credibility for LQCD.
- Landmark in history of quantum field theory: quantitative verification of nonperturbative technology (c.f., 1950's).
- Ready for beyond the Standard Model!

CKM today and with 2-3% theory errors.

And with B Factories ...

G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). - p.77/77