
Forward and Off-Forward Nucleon Structure Measurements at HERMES

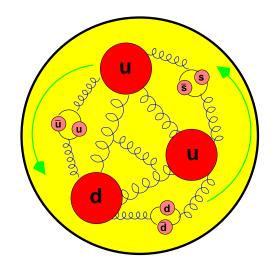
Ed Kinney

University of Colorado at Boulder SLAC Summer Institute - Topical Conference 15 August 2002

Outline

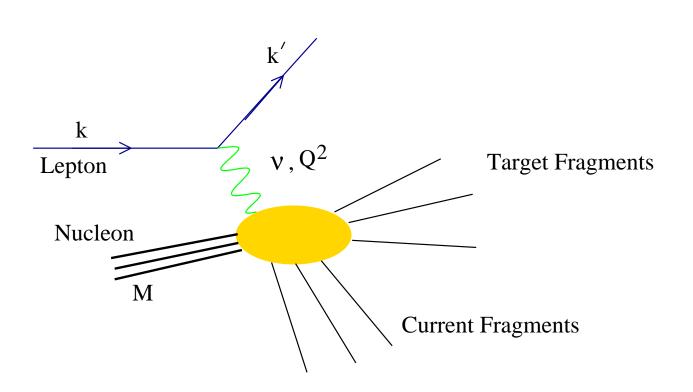
• Introduction

- \rightarrow Partonic Structure
- \rightarrow Deep Inelastic Scattering
- \rightarrow Inclusive, Semi-Inclusive, Exclusive Measurements


• The HERMES Experiment at DESY

- $\rightarrow\,$ Physics Goals
- $\rightarrow\,$ Beam and Targets
- \rightarrow Spectrometer
- New Inclusive Results
 - \rightarrow Inclusive DIS Formalism
 - $\rightarrow A_1$, g_1 from hydrogen and deuterium
 - \rightarrow DGLAP Evolution Analysis
- Semi-Inclusive Results
 - \rightarrow Semi-inclusive DIS: Purity Analysis
 - \rightarrow Flavor Decomposition Results

- Exclusive Results
 - → Exclusive Formalism and Generalized Parton Distributions
 - \rightarrow Deeply Virtual Compton Scattering
 - \rightarrow Meson Electroproduction
- Future Plans for HERMES
- Summary


Partonic Structure

• Goal: Quantitative Understanding of Nucleon Structure

- Basic Questions:
 - $\rightarrow\,$ How does the nucleon mass arise from quarks and gluons?
 - $\rightarrow\,$ How is the spin formed from quarks and gluons?
- Technical Questions:
 - \rightarrow What are the structure functions $F_i(x,Q^2)$ of the nucleon?
 - \rightarrow What are the spin structure functions $g_i(x,Q^2)$ of the nucleon?
 - \rightarrow How can these functions be understood in terms of polarized, flavored quark and gluon constituent structure functions, e.g., $u(x,Q^2)$?

Deep Inelastic Scattering

- Virtual photon of energy ν and rest mass Q^2 is absorbed by nucleon
- "Quark Momentum" \approx Bjorken $x = Q^2/2M\nu$
- "Resolution of Probe" $\approx Q^2 = -(k k')^2$
- Hadrons (jet) carrying photon momentum are Current Fragments
- Hadrons from "spectator" remnants of nucleon are Target Fragments

Nucleon Spin Structure

Whence spin?

$$J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g = \frac{1}{2}$$

 $\Delta\Sigma$ is small!

- 1980: First measurements at SLAC (E80,E130)
- 1988: $\Delta \Sigma = 0.012 \pm 0.17$ at EMC << Ellis-Jaffe Sum
- 2000: SLAC,CERN, DESY give $\Delta\Sigma\approx 0.2\leftrightarrow 0.4$

Explanations?

- Strange sea polarization Δs large and negative?
- Larger than expected gluon polarization ΔG ?
- Large orbital angular momentum contributions L_q , L_g ?

DIS Measurements

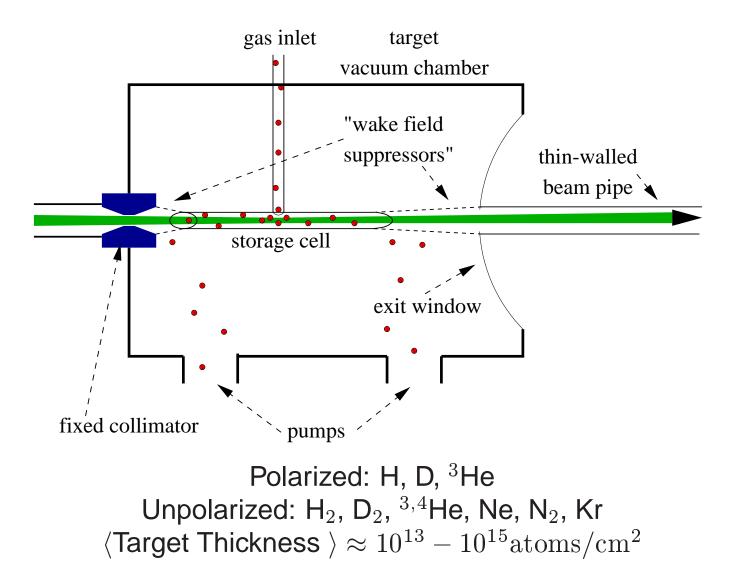

- Inclusive Only the scattered lepton is detected
 - $\rightarrow\,$ Cross Section is product of hard QED interaction and initial hadronic structure functions
 - $\rightarrow\,$ Independent of final hadronic state
- Semi-Inclusive Hadrons coincident with lepton are detected
 - → Cross Section is product of hard QED interaction, initial hadronic structure functions, final hadronic fragmentation functions
 - $\rightarrow\,$ Kinematic correlation with virtual photon allows flavor separation
 - \rightarrow Typically 1 or 2 hadrons detected out of many in final state
- Exclusive Final state = lepton + nucleon + only one additional particle
 - → Cross Section is product of hard QED interaction, generalized structure function of nucleon and asymptotic particle distribution
 - $\rightarrow\,$ New kinematic dependence: momentum transfer to nucleon

The HERMES Experiment

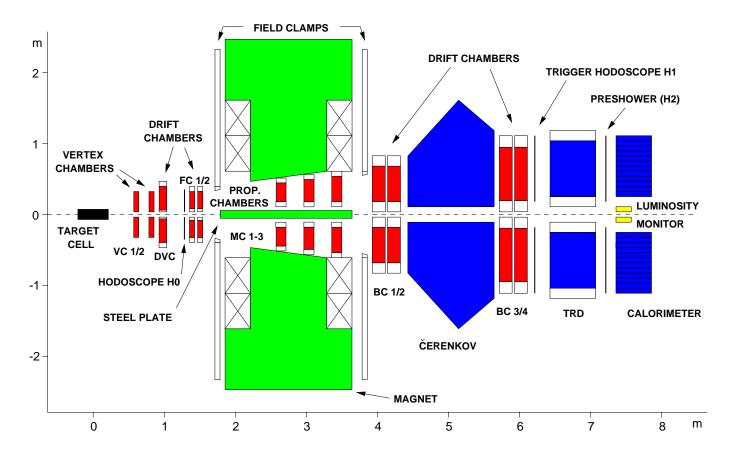
- Deep inelastic scattering of polarized electrons from polarized nucleon (fixed) gas targets
- Forward open geometry spectrometer capable of detecting and identifying electrons, hadrons, and photons
- Primary Research Goal: Study of Nucleon Spin Structure
 - \rightarrow Inclusive Structure Functions g_1, g_2, h_1, b_1
 - \rightarrow Flavor dependence of g_1 from semi-inclusive DIS
 - \rightarrow Gluon polarization using photon-gluon fusion process
 - → Total quark angular momentum from Exclusive Reactions
- Bonus Research Goals:
 - \rightarrow Diffraction Physics
 - \rightarrow Polarized Fragmentation
 - \rightarrow Hadronization in Nuclei
 - \rightarrow Light-sea flavor structure
 - \rightarrow Generalized Parton Distributions
 - \rightarrow ...

The HERMES Collaboration

- Experiment located at DESY in Hamburg, Germany
- Members Insitutions from: Armenia, Belgium, Canada, China, Germany, Italy, Japan, Netherlands, Poland, Russia, UK, and USA
- Homepage: http://www-hermes.desy.de
- Run/target History:
 - \rightarrow 1995: Commissioning/ Polarized ³He
 - \rightarrow 1996/97: Polarized ¹H, Unpolarized ¹H, ²H, ³He, ¹⁴N
 - \rightarrow 1998/99: Electrons, Polarized ²H, +RICH and Charm Upgrades
 - \rightarrow 2000: Polarized ²H, Unpolarized ¹H, ²H, ⁸⁴Kr



The HERMES experiment



HERA Electron Polarization during a single Fill

The HERMES Gas Target

The HERMES spectrometer

- large solid angle: $|\theta_x| < 170 \text{ mrad}$ $40 < \theta_y < 140 \text{ mrad}$
- momentum resolution \sim 1% from 1 to 27 GeV
- hadron/lepton contamination < 1% (with high efficiency)
- calo energy resolution $\sim 2\% + 5.1\%/\sqrt{E} + 10\%/E$

Polarized DIS

• Inclusive cross section for polarized nucleon and longitudinally polarized beam depends on F_1 , F_2 , g_1 , g_2 , where in the quark parton model

$$F_1(x) = \frac{1}{2} \sum_f e_f^2 q_f(x)$$

$$F_2(x) = 2xF_1(x)$$

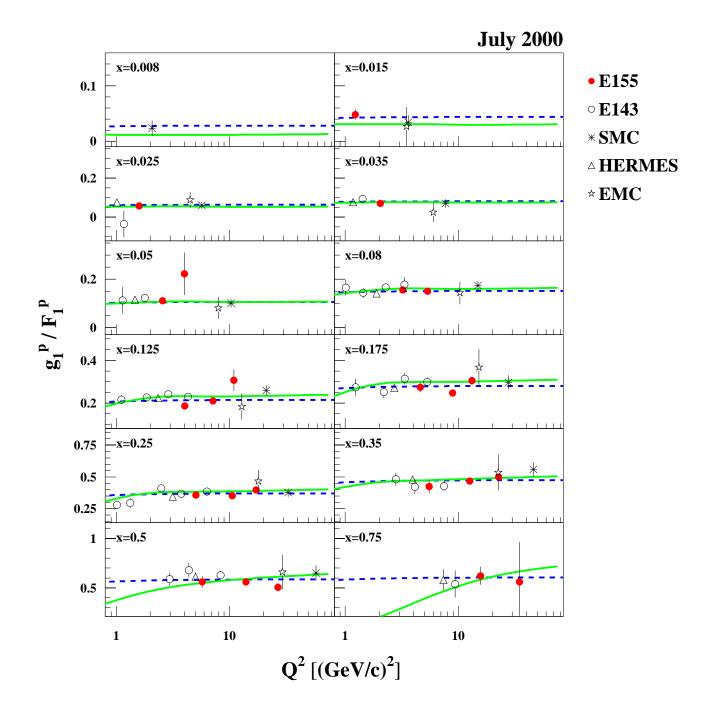
$$g_1(x) = \frac{1}{2} \sum_f e_f^2 \Delta q_f(x)$$

$$g_2(x) = 0$$

- q_f and Δq_f are helicity sum and difference parton distributions for quark flavor f
- Both longitudinal and transverse nucleon polarizations necessary for independent extraction of the four inclusive structure functions

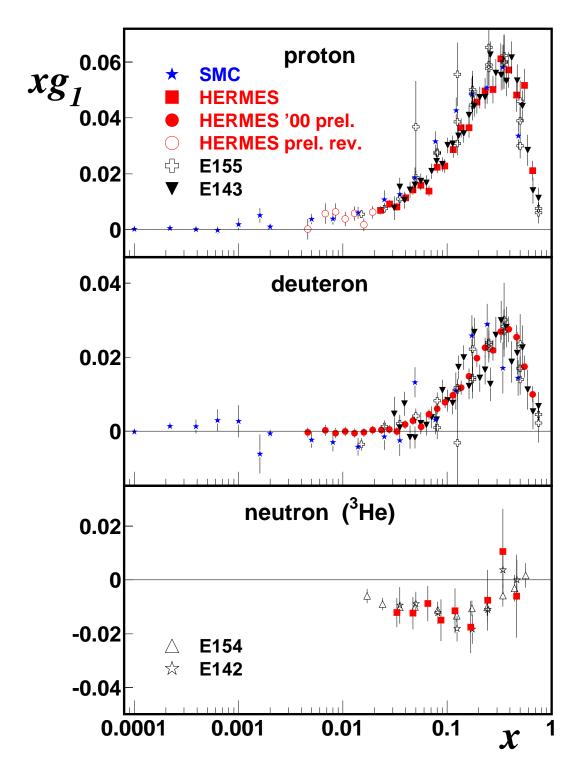
Asymmetry Measurements

Polarized DIS experiments typically measure asymmetries A_{\parallel} and A_{\perp} to determine physics asymmetries A_1 and A_2 :


$$A_{\parallel} = \frac{\sigma^{\overleftrightarrow} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overleftrightarrow} + \sigma^{\overrightarrow{\Rightarrow}}} \qquad \qquad A_{\perp} = \frac{\sigma^{\overrightarrow{\Downarrow}} - \sigma^{\overrightarrow{\Uparrow}}}{\sigma^{\overrightarrow{\Downarrow}} + \sigma^{\overrightarrow{\Uparrow}}} \\ = D(A_1 + \eta A_2) \qquad \qquad \qquad = d(\zeta A_1 + A_2)$$

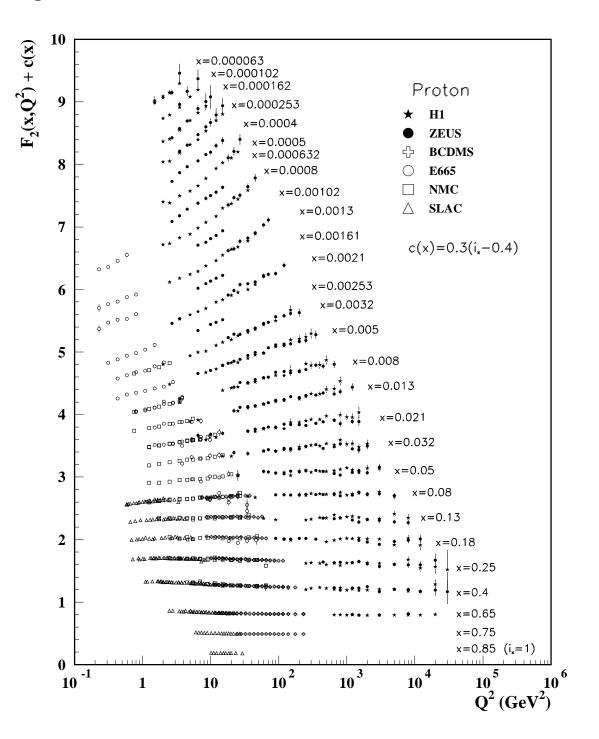
The asymmetries A_1 and A_2 can then be related to the structure functions:

$$A_1 = \frac{g_1 - \gamma^2 g_2}{F_1} \approx \frac{g_1}{F_1} \qquad \qquad A_2 = \gamma \frac{(g_1 + g_2)}{F_1}$$

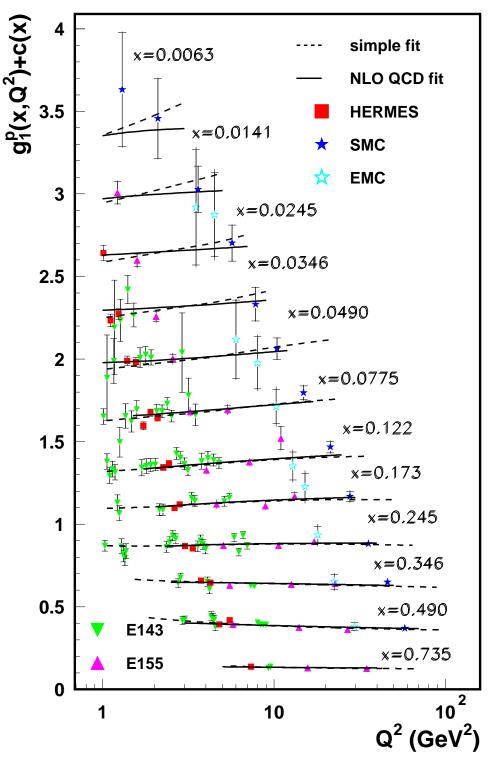

(the undefined variables are all kinematical factors)

 Q^2 Dependence of A_1

Green = NLO pQCD based fit; Blue = Phenomenological fit (from SLAC E155 page www.slac.stanford.edu/exp/e155/)


Latest Measurements of g_1

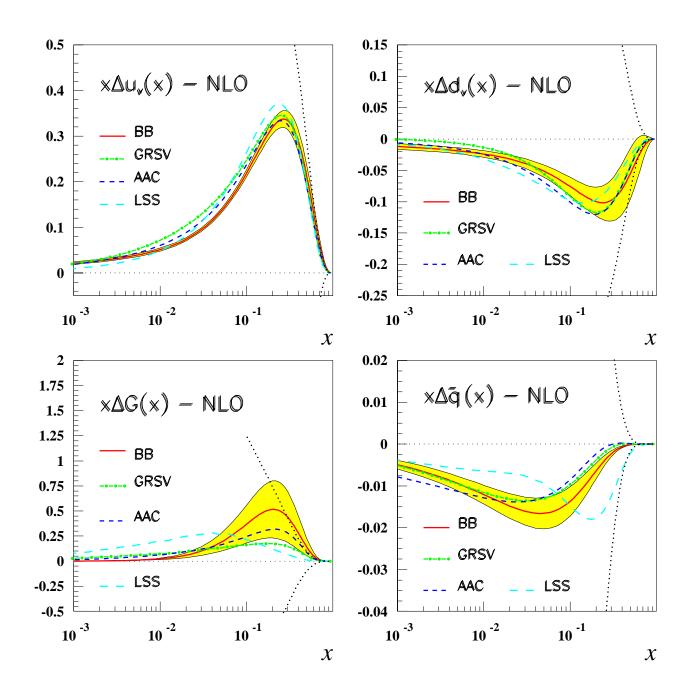
Plots are at measured Q^2


World Measurements of F_2

Unpolarized Structure Functions are measured over broad range of x and Q^2

World Measurements of g_1

Polarized Structure Functions from SLAC, CERN and DESY

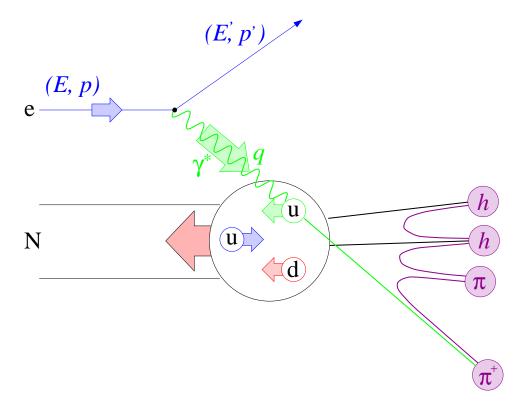

NLO pQCD Fits to g_1

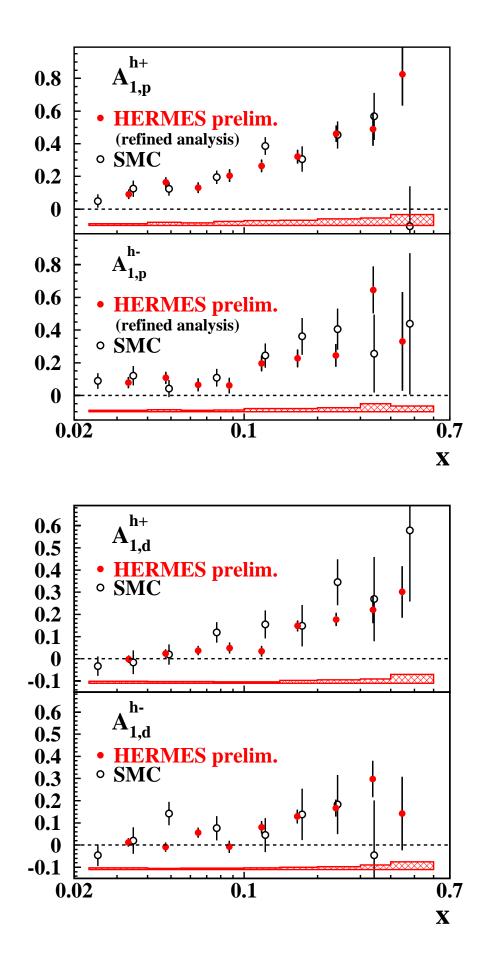
NLO pQCD Fits to g_1 at $Q^2 = 4$ GeV² of Blümlein and Böttcher (hep-ph/0203155) find

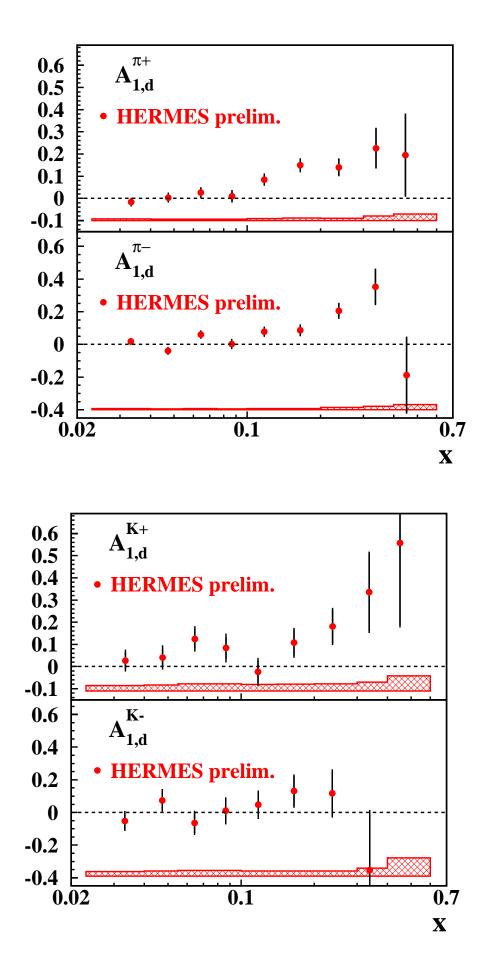
 $\Delta \bar{q} = -0.07 \pm 0.02(stat)$

 $\Delta G = 1.03 \pm 0.55(stat)$

where SU(3) flavor symmetry has been assumed.

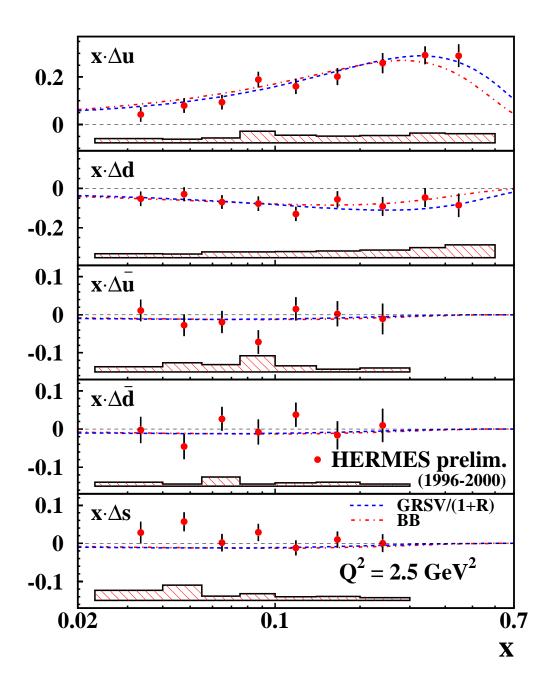

- Yellow band represents propagated 1 σ error
- LSS: Leader et al., hep-ph/0111267
- GRSV: Glück et al., hep-ph/0011215
- AAC: Goto et al., hep-ph/0001046


Semi-Inclusive Asymmetries


Leading hadron detected in coincidence with scattered electron has statistical kinematic correlation with quark which absorbed the virtual photon; hadron identity correlated with quark flavor. In leading order

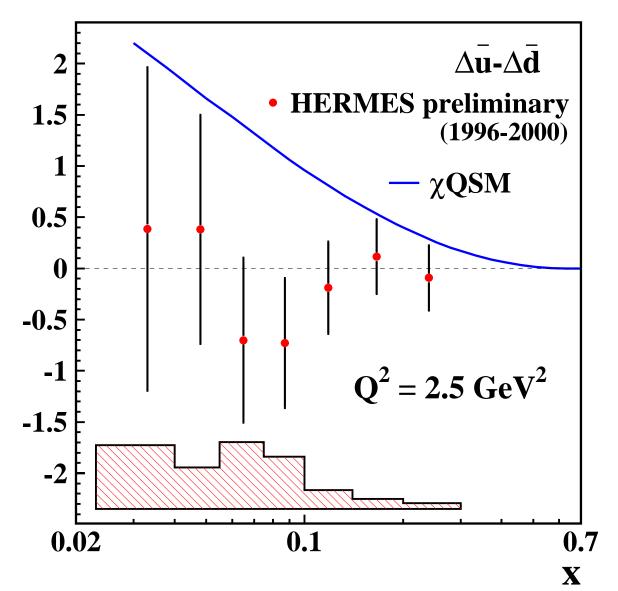
$$A_1^h \approx \frac{g_1^h}{F_1^h}(x, Q^2) = \frac{\int_{z_{min}}^{z_{max}} dz \sum_f e_f^2 \Delta q_f(x, Q^2) \cdot D_f^h(z, Q^2)}{\int_{z_{min}}^{z_{max}} dz \sum_f e_f^2 q_f(x, Q^2) \cdot D_f^h(z, Q^2)}$$

 $D_f^h(z, Q^2)$ is the fragmentation function giving the probability that a struck quark of flavor f yields a hadron of fractional energy $z = E_h/\nu$ at a given Q^2 .

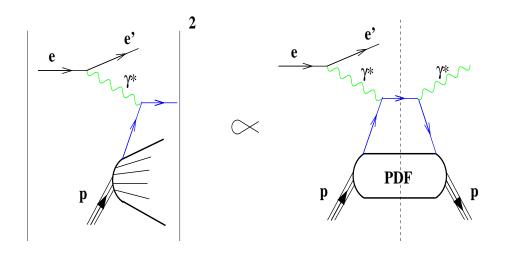


Flavor Separated Polarized Quark Distributions

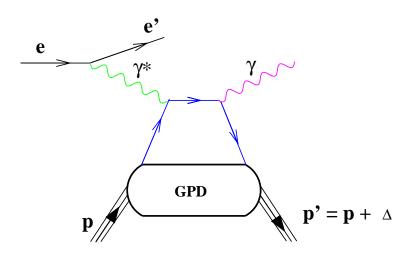
New Extraction using deuterium data and RICH hadron id


$$\frac{\Delta u}{u}, \quad \frac{\Delta d}{d}, \quad \frac{\Delta \bar{u}}{\bar{u}}, \quad \frac{\Delta \bar{d}}{\bar{d}}, \quad \frac{\Delta s + \Delta \bar{s}}{s + \bar{s}}$$

- Five independent polarizations fit to each x bin:
- In measured x range, A_1 's \approx 10% sensitive
- Systematic Uncertainty dominated by limited knowledge of fragmentation functions and unpolarized q_f 's.

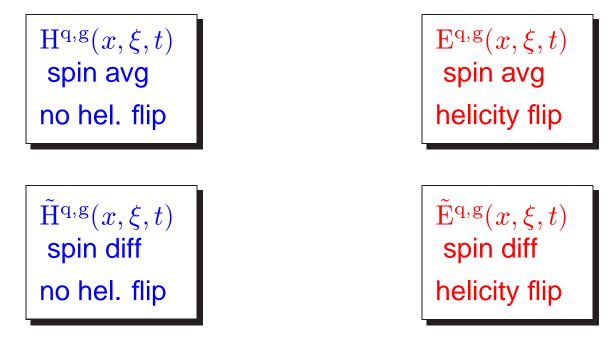

Polarized Light Sea Asymmetry

- No strong breaking of the flavor symmetry in the light sea is observed within the limits of the data.
- Predictions from e.g., the chiral quark soliton model are not favored by this data (Dressler et al., EPJC 14 (2000) 147.)



Forward vs Off-Forward Distributions

DIS is typically understood in terms of Forward amplitudes using the optical theorem

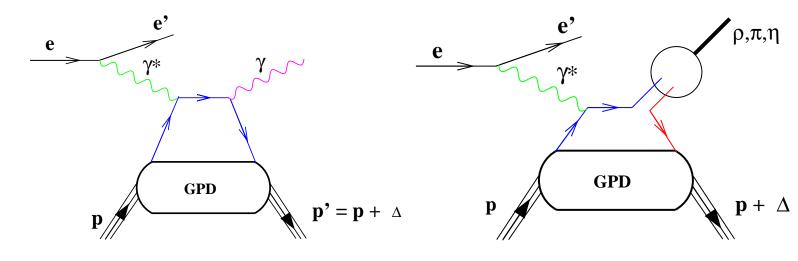


Using an Exclusive reaction, such as Deeply Virtual Compton Scattering (DVCS) one explores the Off-Forward amplitude:

At leading twist (twist 2), there are 4 independent GPDs for each quark and gluon type

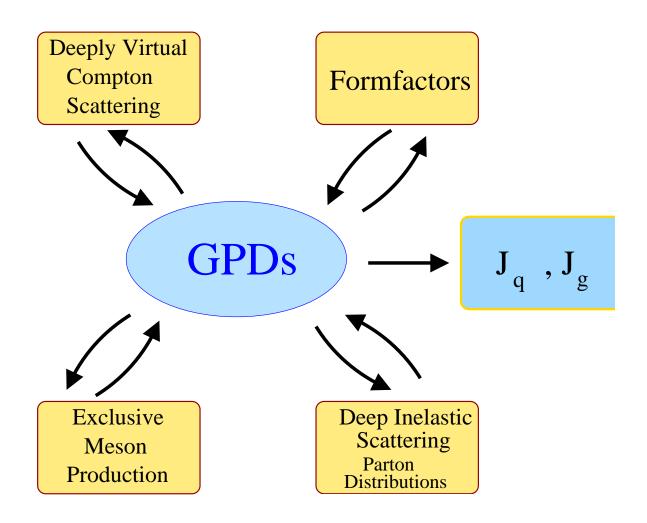
Where:

• x defined by: $k^+ = x(p + \Delta/2)^+$

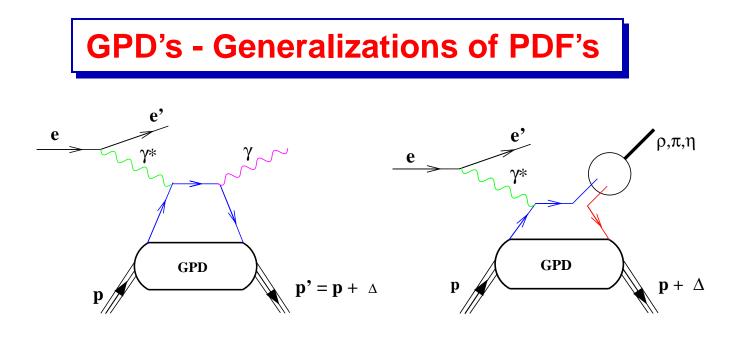

the light cone momentum fraction of the struck parton

- $t = \Delta^2$; the squared momentum transfer to the nucleon
- ξ defined by: $\Delta^+ = -2\xi(p+\Delta/2)^+$

 \rightarrow is the longitudinal fraction of the momentum transfer t

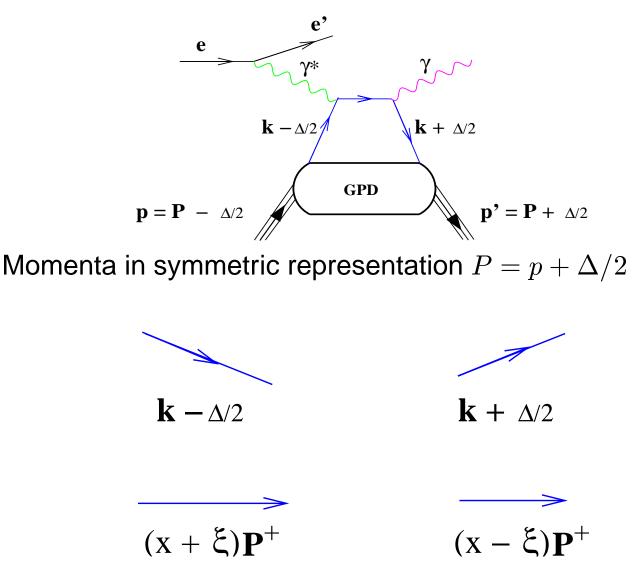

 \rightarrow parameterizes the skewedness (how far off-forward)

Exclusive Processes



- Deeply Virtual Compton Scattering, vector meson and pseudo-scalar production involve different combinations, flavors of GPDs
- DVCS \rightarrow H, E, \tilde{H}, \tilde{E}
- Vector mesons (ρ_L , ω_L , ϕ_L) \rightarrow H, E
- Pseudo-scalar mesons $(\pi, \eta) \rightarrow \tilde{H}, \tilde{E}$
- Meson production also involves the meson distribution function

GPD Review



GPDs provide a link between the inclusive (parton distributions) and exclusive (form factors) characteristics of the nucleon.

- When the final state momentum differs from the initial \rightarrow off-forward kinematics
- Factorization for non-forward kinematics has been recently proven
- GPDs give information on the correlations between partons of different momentum

DVCS – The Parton Momentum

- ξ defines the momentum transfer fraction in the longitudinal (+) direction
- $x \neq x_{Bj}$ in Bjorken limit; no simple probability interpretation possible
- GPDs describe correlations between partons of different momenta

GPDs and DIS

In the limit of $\xi \to 0$ and $t \to 0$, H and \widetilde{H} reduce to the ordinary parton distributions:

$$H^{q}(x,0,0) = \begin{cases} q(x), & x > 0, \\ \\ -\bar{q}(-x), & x < 0. \end{cases}$$

$$ilde{H}^q(x,0,0) = \begin{cases} \Delta q(x), & x > 0, \\ \\ \Delta \bar{q}(-x), & x < 0. \end{cases}$$

E(x,0,0) and $\widetilde{E}(x,0,0)$ not accessible in DIS, as nucleon (parton) helicity flip is forbidden (angular momentum conservation)

GPDs and Elastic Scattering

Integration over x gives the following sum rules:

$$\begin{split} &\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \\ &\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \\ &\int_{-1}^{1} dx \widetilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t) \\ &\int_{-1}^{1} dx \widetilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t) \end{split}$$

where F_1 and F_2 are the Dirac and Pauli form factors and G_A and G_P are the axial-vector and pseudo-scalar form factors

 \rightarrow Link to elastic scattering

GPDs and Angular Momentum

Burkardt has shown an intuitive link to total angular momentum when:

$$\xi = 0, \ \Delta = \Delta_{\perp}$$

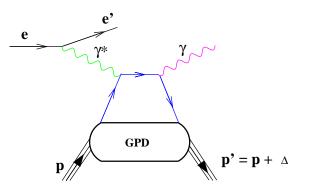
- At $\xi = 0$, $x = x_{Bj}$ and the probability interpretation is again valid
- Δ_{\perp} is viewed as the Fourier transform of an impact parameter b_{\perp}
- GPDs describe the probability to probe a parton of (longitudinal) momentum fraction x at a perpendicular distance b_{\perp}
- ightarrow Similar to simple angular momentum $ec{L}=ec{r} imesec{p}$

GPDs and Angular Momentum

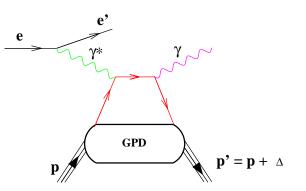
The expectation values of the nucleon spin carried by quarks and gluons have been shown by Ji to be related to the second moments of the GPDs at t = 0 (Ji ,Phys. Rev. Lett. **78**):

$$\int_{-1}^{1} dx x [H^{q,g}(x,\xi,t=0) + E^{q,g}(x,\xi,t=0)] = 2\hat{J}^{q,g}$$

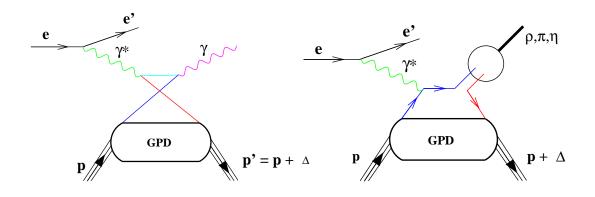
The nucleon spin can be written as:

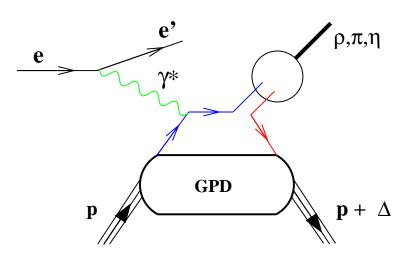

$$\begin{aligned} \frac{1}{2} &= \hat{J}_q + \hat{J}_g \\ \frac{1}{2} &= \hat{L}_q + \frac{1}{2}\Sigma + \hat{J}_g \end{aligned}$$

 \hat{L}_q can be obtained by measuring \hat{J}_q (from GPDs) and $\frac{1}{2}\Sigma$ (from DIS)

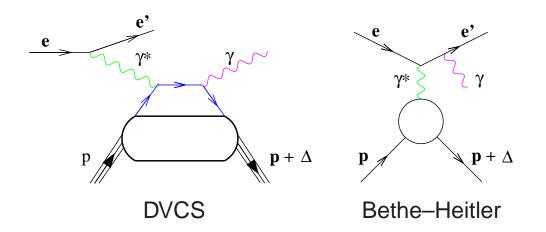

 \rightarrow appears to be analysis scheme dependent (Jaffe hep-ph/0102281)

Crossover Behavior


• Regime 1: $x > \xi$

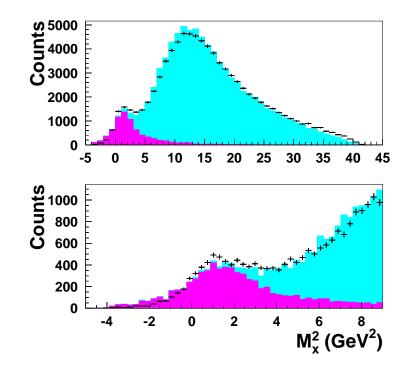

• Regime 2: $x < -\xi$

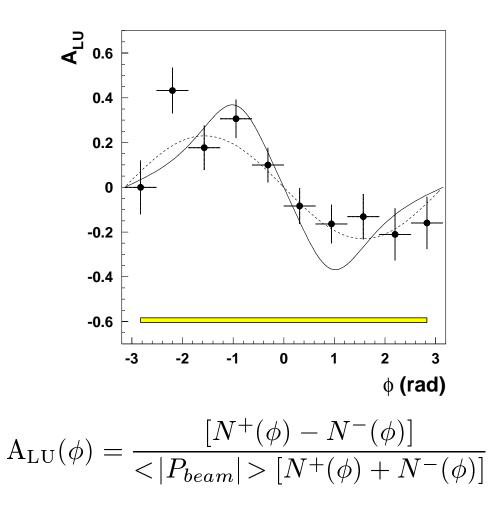
• Regime 3: $-\xi < |x| < \xi$



Exclusive Meson Production

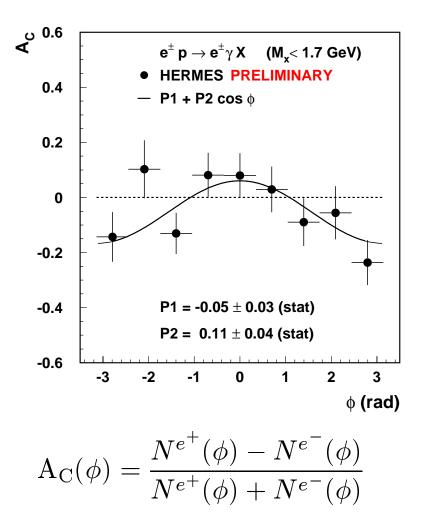
- Easy to detect final state of charged particles
- But convoluted with the meson wave function
- Several different final states: $\pi, \eta, \rho, \omega, \phi$
- Different combinations, flavors of GPDs
 - $\rightarrow\,$ longitudinal polarized channels ($\rho_L,\omega_L,\phi_L)$ sensitive to H and E
 - \rightarrow pseudo scalar channels (π, η) sensitive to \tilde{H} and \tilde{E}


Deeply Virtual Compton Scattering (DVCS)


- DVCS electroproduction of real photon from parton inside the nucleon
- Interferes with the Bethe-Heitler (radiative) process

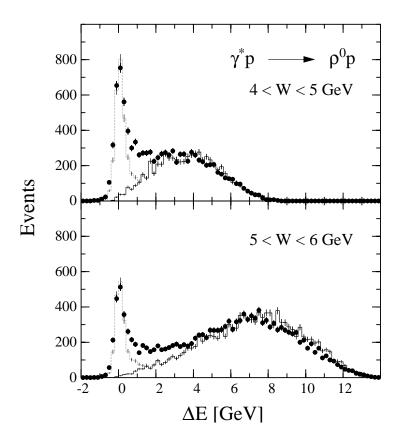
 $d\sigma \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + (\mathcal{T}_{BH}^*\mathcal{T}_{DVCS} + \mathcal{T}_{DVCS}^*\mathcal{T}_{BH})|$

 HERMES detects scattered lepton and real photon, reconstructs recoiling proton


DVCS: Beam–Spin Asymmetry

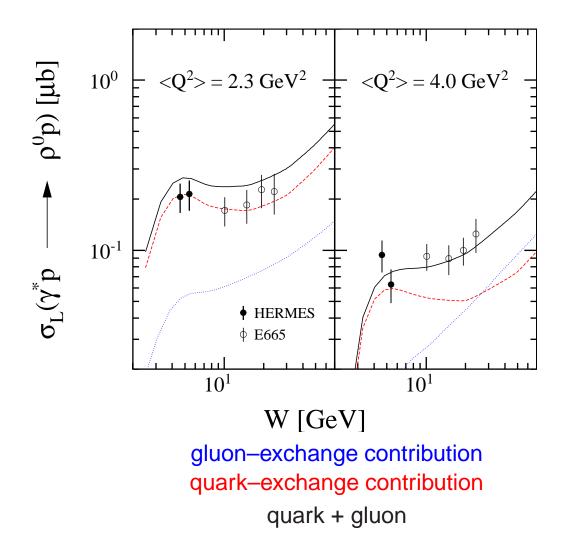
- Using polarized beam, unpolarized target, can measure the beam–spin asymmetry
- Sensitive to the imaginary part of the DVCS+BH interference
- Using method of moments,

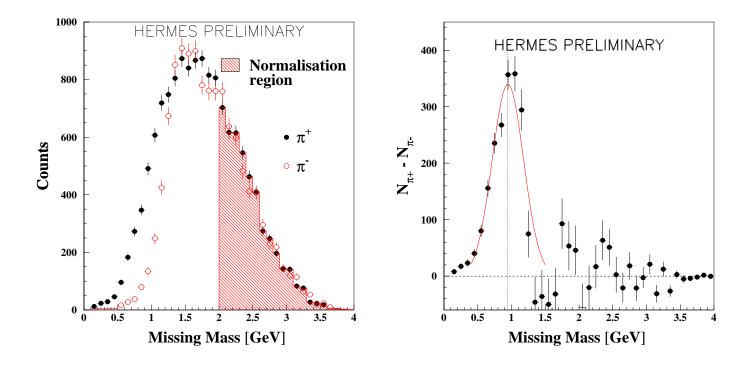
$$A_{LU}^{\sin \phi} = 0.23 \pm 0.04 (stat) \pm 0.03 (sys)$$


DVCS: Beam–Charge Asymmetry

- Using unpolarized positron and electron beams, can measure the beam–charge asymmetry
- Sensitive to the real part of the DVCS+BH interference
- Using method of moments,

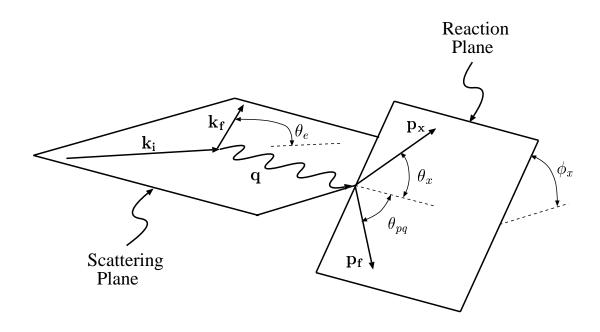
$$A_{\rm C}^{\cos\phi} = 0.11 \pm 0.04({\rm stat}) \pm 0.03({\rm sys})$$


Diffractive ρ^0 **Production**

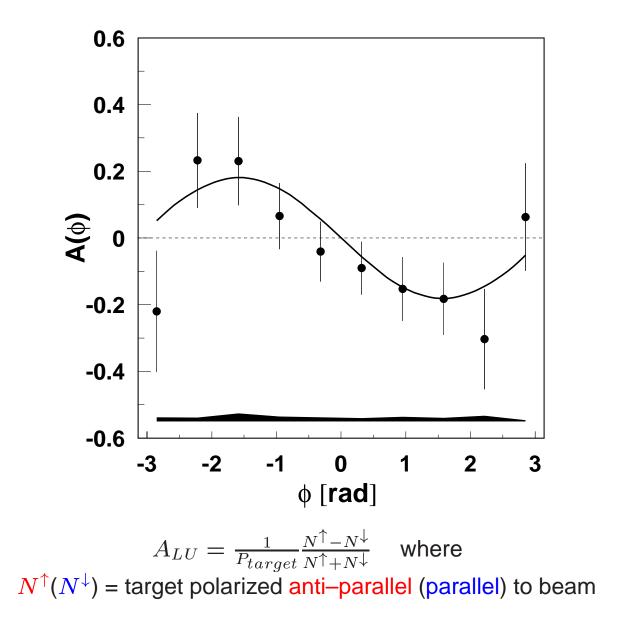

- ρ^0 selected via reconstruction of $\pi^+\pi^-$ pairs
- Exclusive ρ^0 events selected using cut in ΔE (= $\frac{M_x^2 m_p^2}{2m_p}$)
- $R = \frac{\sigma_L}{\sigma_T}$ extracted by determination of r_{00}^{04} spin density matrix element

ho^0 Longitudinal Cross Section

- Factorization proven for longitudinal ρ^0 electroproduction
- Use parameterization of R and measurement of σ_{Total} to get σ_L
- HERMES results consistent with GPD-based calculation of Vanderhaeghen *et al* [PRL 80,5064 (1998)]

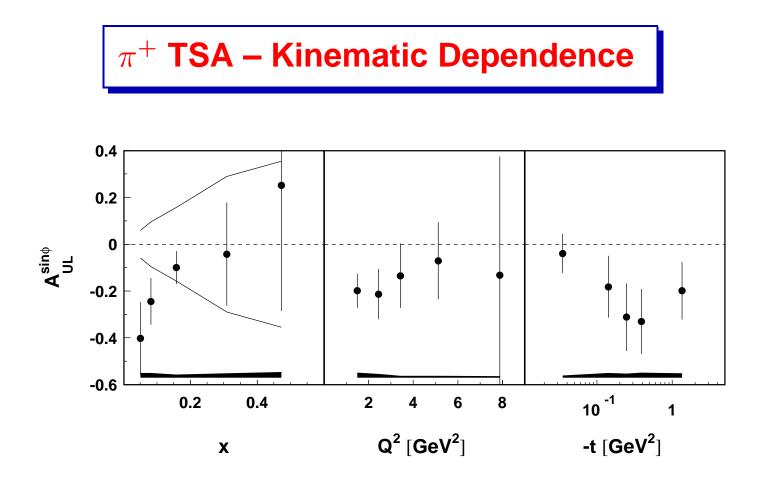


Exclusive π^+ **Production**


- HERMES missing–mass resolution not sufficient to cleanly identify exclusive π^+ event–by–event
- Obtain exclusive sample by subtracting semi-inclusive π⁻ spectrum (where exclusive production is impossible) from π⁺ sample
- May be some complication in background subtraction due to differences in π^+ and π^- production with Δ excitation

Target–spin Azimuthal Asymmetry from Exclusive π^+ Production

- Frankfurt *et al* [PRL 84 2589 (2000)]: interference between pseudoscalar *E* and pseudovector *H* gives large asymmetry in φ distribution of target–spin asymmetry (transversely polarized target)
- Target polarized longitudinally with respect to beam direction has a small transverse component, S_{\perp} , with respect to virtual photon direction
- Polarized cross section: $\sigma_S \sim [S_{\perp}\sigma_L + S_{\parallel}\sigma_{LT}]A_{LU}^{\sin\phi}\sin\phi$


Results for π^+ **Target–spin Asymmetry**

• Averaged over acceptance:

 $A_{LU}^{\sin\phi} = 0.18 \pm 0.05 (\text{stat}) \pm 0.02 (\text{sys})$

•
$$\langle x \rangle = 0.15$$
, $\langle Q^2 \rangle = 2.2 \text{ GeV}^2$, $\langle t \rangle = -0.46 \text{ GeV}^2$

- Upper lines = maximum contribution from transverse component of target polarization
- No strong Q^2 or x dependence
- σ_{LT} is suppressed by 1/Q, but $S_{\perp}/S \sim 0.16$, so both terms of similar magnitude

Future Plans of HERMES

- HERA II Run 2002-2006(?)
- Transversely Polarized Hydrogen Target + Λ^0 Detector
 - \rightarrow Transversity Spin Structure Function of the Proton
 - \rightarrow Polarized Framentation via Lambda production
 - \rightarrow Unpolarized Nuclear Studies
- 2004: Recoil Detector: Focus on Exclusive Reactions

At the same time, new experiments at CERN (COMPASS), BNL (RHIC-Spin), and SLAC (E161) to study gluon polarization. Jefferson Lab and its planned upgrade have a large program of Exclusive Studies.

In long range future, plans for measurements at very low *x* at a future Electron Ion Collider or Polarized HERA could explore details of sea and gluon polarization. Further plans for facilities at the TESLA version of the NLC are also under study (THERA and TESLA-N).

Summary

- Inclusive measurements of g₁ and g₂ (SLAC) cover intermediate kinematic range relatively well. Extremes in x require Jefferson Lab and a new high energy collider.
- Semi-inclusive measurements have yielded new information about details of the sea polarization. Sea polarization effects do not appear to be strong.
- Exclusive reactions are the tool to study the newly developed generalized parton distributions. Mapping out these functions has just begun; potentially provide uniform way to treat both deep inelastic and elastic scattering reactions. Off-forward distributions can be related to the total quark angular momentum.
- The next big news will be the new measurements of gluon polarization!