Rare B Decays at BABAR

Paul C. Bloom University of Colorado SLAC Summer Institute

SSI - Secrets of the B Meson

What this talk will cover

- B decays with Penguins, Penguins and more Penguins
 - No, not that kind of penguin
 - This kind of penguin
- Electromagnetic Penguins
 - K^{*}γ, ρ/ω γ, b→sγ
- Electroweak Penguins
 K^(*)I^{+I^{-,}} Dileptons, Kvν, γγ
- QCD Penguins (charmless hadronic decays)
 - Two and three-body final states

What this talk won't cover

- Vast breadth of physics from the B-Factories
 45 minutes is about right to list them all
- You already heard about CP physics at BABAR in David Lange's talk on Wednesday
- Still, some things will have to go uncovered
 - Tau physics
 - Charm physics
 - B mixing and lifetime
 - Semileptonic B decays and CKM matrix elements
 - B decays to charm and charmonium

CKM - Quark Couplings in the Standard Model

- Weak isospin doublet members (b´, s´, d´) are states of mixed flavor (d') (V_{ud} V_{us} V_{ub}) (d)
 - The transformation between mass eigenstates (which $\mathbf{s'} = \mathbf{V_{cd}} \mathbf{V_{cs}} \mathbf{V_{cb}} \mathbf{v_{tb}} \mathbf{v_{tb}}$

we observe) and flavor eigenstates is the matrix of Cabbibo, Kobayashi and Maskawa

 Unitarity implies 4 free parameters, one of which is a phase. One requirement of this condition is: V_{ud}V^{*}_{ub} + V_{cd}V^{*}_{cb} + V_{td}V^{*}_{tb} = 0, which can be represented geometrically as a triangle...

The Unitarity Triangle: Getting at all the Angles – and Sides

 The B sector provides many options to learn about and (over-) constrain this triangle

Defining "rare", and Why these Decays are Interesting

- By rare, we mean decays in which there is neither open nor hidden charm V_{ub} < 0.10
 - − b \rightarrow u is CKM suppressed:
 - b \rightarrow s, d proceed only via higher order diagrams (penguins!)
 - Basically, anything that does not involve a b \rightarrow c transition
- Processes with tree diagrams that are CKM suppressed or forbidden are sensitive to Penguin amplitudes
 - Example: $B^+ \rightarrow \eta' K^+$

- Particles that can't appear on-shell can appear in loops
 Top, Higgs, SUSY, ???
- Interfering amplitudes can expose new phases they also complicate the interpretation of CP measurements

The PEP-II Asymmetric B-factory

3.1 GeV e⁺ on 9 GeV e⁻, produce the

 Υ (4S) with a CM boost < $\beta\gamma$ > = 0.55

- Peak Luminosity = 4.60×10^{33} cm⁻² s⁻¹ (3 × 10³³ cm⁻² s⁻¹ design)
- Positron current = 1775 mA
- Electron current = 1060 mA
- Number of bunches = 800
- IP beam sizes = 147 mm × 5 mm

August 15, 2002

Paul C. Bloom

Data Sample(s)

The BABAR Detector

SVT: 5 double side layers, 97% efficiency, 15 mm z hit resolution DCH: 40 axial and stereo layers, σ (dE/dx) = 7.5% Tracking: $\sigma(p_T)/p_T = 0.13$ % ′ p_T + 0.45 %, $s(z_0) = 65m @ 1 GeV/c$ **DIRC: 144 quartz bars** EMC: 6580 CsI(TI) crystals $\sigma_{\rm F}/{\rm E}$ = 2.3 % ·E^{-1/4} Å 1.9 % IFR: 19 RPC layers, muon and K_{I} id

August 15, 2002

B Decays at the $\Upsilon(4S)$

 $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$, B+B⁻ ~100% with $p^*_B \cong 325$ MeV/c

- In a two body B decay, daughters are produced back to back in the CM with E*≅2.6 GeV, p = 1.0 to 4.4 GeV/c in the lab, depending on the daughter masses
- Kinematic signature for B decays express energy and momentum conservation (within resolution) as:

Backgrounds

- Generic b→c backgrounds not a problem for most rare decay modes
 - Heavier daughters \Rightarrow lower recoil energy
 - Exception is modes with high multiplicity
 - Some modes suffer from specific backgrounds, which can be controlled via selection criteria (e.g. ψK^* in $K^*I^+I^-$)
- Principal backgrounds to rare decays originate from qq (q=u,d,s,c) production in the continuum
 - Cross section for udsc ~3.5 nb, Υ ~1 nb
 - Fake signal arises from random track/neutral combinations
 - Topology is "jet-like" as $q\overline{q}$ produced well above threshold
 - B decays spherical in the CM, so...
- Exploit topological variables to suppress continuum background
 - Fox Wolfram moments, B decay axis correlation with jet axis

$m_{ES} vs \Delta E$

- Signal clusters around $\Delta E=0$ and $m_{ES}=m_{B}$
- Continuum background is more or less isotropic over the plane

- $\Delta E linear with$ negative slope
- B background populates the sidebands of ΔE
 - Lose or gain a particle to "manufacture" the final state of interest

August 15, 2002

Event Shape

- Exploit spherical decay of the B vs "jettiness" of qq background
- Thrust, sphericity provide powerful separation between true B's and continuum background

More on Event Shape

- Additional information available if further continuum suppression is needed - and it often is
 - Direction of B flight and B decay wrt the beam axis
- Angular energy flow
 Use of this and other information can be optimized via neural network or a Fisher discriminant

Separation after thrust cut

Particle Identification

- Separation of charged kaons and pions is crucial to most rare analyses – especially at high momentum Pions outnumber kaons in the continuum 7 to 1
- The DIRC measures the Cherenkov angle $\theta_{\rm C}$ associated a track passing through a quartz radiator

 Well behaved pulls can be cut on, included in fits, or made part of a global selection which **b** includes dE/dx from the (θ_{c}^{π}) tracking systems

August 15, 2002

Paul C. Bloom SSI - Secrets of the B Meson

Extracting a Signal (I)

- All rare analyses at BABAR are performed blind
 - Don't look at the answer until the analysis is "finalized"
 - Avoid experimenter's bias

Event counting analysis

- Tune selection to optimize expected signal wrt estimated background (the experimental sensitivity or upper limit)
- Count events in $m_{ES} \Delta E$ signal box
- Estimate continuum background from sidebands and subtract to obtain signal yield
- Best suited for analyses where large yields or good signal to background is expected

Extracting a Signal (II)

- In cases where a small yield is expected, or the backgrounds are large (or both), the technique of choice is an extended maximum likelihood fit
 - $L = \frac{e}{N!} \prod_{i=1}^{N} L_i = \sum_{j=1}^{m} n_j P_j(\vec{x})$ - n_i: population for each species (signal and background)
 - $P_j(x_i)$: Probability density function evaluated with a set of observables x_i ($m_{ES} \Delta E$, Fisher, etc ...)
 - Statistical error on the event yield:

$D(-2 \ln L) = 1$

 Statistical significance ~ difference in D(-2 InL) when forced to null signal hypothesis (typically require a 4σ effect to claim an observation

Extracting a Signal (III)

- Key ingredient to ML fit are the Probability Density Functions
 - PDFs must describe the data
- Determine signal PDFs from Monte Carlo
 - Use control samples to study Data/MC agreement and adjust PDFs as necessary
 - e.g. study inclusive samples of resonances in offpeak data to understand resonance line-shapes and resolutions
 - Use plentiful B \rightarrow charm modes with useful topologies to understand m_{ES}, Δ E and event shape variables.
 - \Rightarrow signal PDFs effectively derived from data
- Determine background PDFs from sideband and offpeak data

Electromagnetic Penguins

- $B \rightarrow K^* \gamma$ was the first penguin to be observed (CLEO)
 - Measurement of branching fraction tests QCD
 - Direct CP violation would indicate new physics
- Ratio of $B(B \rightarrow \rho \gamma)$ to $B(B \rightarrow K^* \gamma)$ sensitive to $|V_{td}/V_{ts}|$
- Inclusive measurement of B(b →sγ) constrains new physics
- The E_γ spectrum from b →sγ provides information on the mass and Fermi motion of the b quark within the B meson

 $B \rightarrow K^* \gamma$

- All analyses require
 - an isolated high energy photon with 1.5 < Eγ*< 3.5 GeV
 - Require EM-like shower profile
 - Veto photons from π^0 , η
- Reconstruct all K* decay modes
- Suppress continuum with cuts on thrust angle, B flight angle and K* helicity, kaon ID

22M BB pairs

	<i>В</i> (В⁰→К⁰*ү) /10 ⁻⁵	<i>В</i> (В+→К+*γ)/10 ⁻⁵	Аср
Theory(avg.)	$7.5~\pm~3.0$	7.5 ± 3.0	Acp < 0.005
PRL 88, 161805(2002)	4.23 ± 0.40(stat.) ± 0.22(sys.)	3.83 ± 0.62(stat.) ± 0.22(sys.)	-0.17 < Acp < 0.08 (90% C.L.)

theory=hep-ph/0106081,0106067,0105302

August 15, 2002

Searches for $B \rightarrow \rho \gamma$ and $\omega \gamma$

- Goal is to measure $|V_{td}/V_{ts}|$ and compare to result from mixing analysis of B_d and B_s systems
- More challenging than $K^*\gamma$
 - Predicted branching fraction smaller by x50
 - $-\rho$ is very broad resonance
 - Backgrounds from $B \rightarrow K^* \gamma$, $B \rightarrow \rho \pi^0$, $b \rightarrow s \gamma$
 - Significant theoretical errors (15-35%) in extracting $|V_{td}/V_{ts}|^2$
- Continuum background rejection with neural net
 - Event shape, Δz , flavor tag
- Kaon ID to veto $K^*\gamma$
- Estimate signal with Maximum Likelihood fit

Results for $B \rightarrow \rho \gamma$ and $\omega \gamma$

- Analyzed sample of 84 million BB pairs
 - No significant signals observed, so set 90% C.L. upper limits

	$B(B \rightarrow \rho^0 \gamma)$	<i>Β</i> (Β→ρ+γ)	<i>В</i> (В→ωγ)
Theory	0.5-0.75 x 10 ⁻⁶	0.8-1.5 x 10 ⁻⁶	Same as $\rho^0\gamma$
BABAR	<1.4x10 ⁻⁶	<2.3x10 ⁻⁶	<1.2x10 ⁻⁶

Preliminary

Theory: hep-ph/0105302,0106081

- Combined limit B(B→ργ) < 1.9 x 10⁻⁶ @ 90% C.L.
 - Assume $(B(B^0 \rightarrow \rho^0 \gamma) = B(B^0 \rightarrow \omega \gamma) = 2^* B(B^+ \rightarrow \rho^+ \gamma))$
- Limit on CKM $|V_{td}/V_{ts}| < 0.036 @ 90\%$ C.L.
- For discussion of theory errors, see Ali & Parkhomenko (Eur Phys. J. C23:89 (2002))

Inclusive $b \rightarrow s\gamma$

- HQET: Quark-Hadron duality $\Rightarrow B(b \rightarrow s\gamma) = B(B \rightarrow X_s\gamma)$
- Theory: NLO B(b→sγ) = 3.57 ± 0.30 x 10⁻⁴
 (hep-ph/0207131)
- Models of E_{γ} spectrum parameterized in m_b and λ_1
- JETSET used to model X_s fragmentation
- Two approaches to the analysis
 - Semi-inclusive (Σ exclusive states)
 - Fully-inclusive
- In both cases, challenge is to reduce backgrounds while controlling systematic and theoretical uncertainties

Semi-Inclusive b $\rightarrow X_s \gamma$

- Sum over exclusive final states
 - $K^{+}/K^{0}_{S} + up \text{ to } 3\pi (1\pi^{0})$
 - total of 12 final states
- 22M BB pairs
- Continuum from sideband, cross feed and BB background from MC
- MC efficiency corrected for observed discrepancy in X_sfragmentation

August 15, 2002

SSI - Secrets of the B Meson

Semi-Inclusive b $\rightarrow X_s \gamma$ - Results

Fully Inclusive b $\rightarrow X_s \gamma$

- Suppress continuum by requiring fast lepton tag, angular separation between tag lepton and photon, missing E to suppress $B \rightarrow XIv$
 - Results in 5% efficiency with x1200 reduction in background
- Consider E_γ in range 2.1 2.7 to reduce model dependence
- Dominant systematic from BB backgrounds with fast π⁰,η
- Continuum subtraction using off-peak data (6.4 fb-1)
- 61M BB pairs (54.6 fb⁻¹)

 $B(B \rightarrow X_{s}g) = (3.88 \pm 0.36(\text{stat}))$ $\pm 0.37(\text{sys})^{+0.43}_{-0.23}(\text{theory})) \times 10^{-4}$

Electroweak Penguins

- Processes that proceed via photons and (W[±], Z⁰)
- Strongly suppressed in the SM
- For many of these processes, theory errors are well controlled
- All are very sensitive to new physics

Measurement of $B \rightarrow K^{(*)}I^+I^-$

- Branching fraction very sensitive to new physics
 - Rate can vary by factor of two with some SM extensions
- m_{\parallel}^2 (=q²) distribution, forward-backward asymmetry also of considerable interest
 - q² distributions vary substantially for SM+
 - Constructive and destructive interference effects
 - Less model dependence than overall rate

 $B \rightarrow K^{(*)}|+|-$

- Many sources of background to control
- Charmonium K^(*)
 - Veto regions in $\Delta E vs m_{II}$
- Continuum

- Fisher with event shape and M(KI) (veto D \rightarrow KIv)
- Combinatorics from $B \rightarrow XI$
 - Use B-likelihood built from E_{miss}, vertex, B production angle
- Peaking backgrounds from particle misID
 - Veto $\mathsf{K}^{(*)}\pi$ in D mass region and include in fit

$$B \rightarrow K^{(*)}I^+I^-$$

- Extract signal with likelihood fit to m_{ES} and ΔE $10^{-}(a) Kl^+ l^- \uparrow 10^{-}(b) Kl^+ l^- BAB}$
- 85M BB pairs
- 4.4σ effect in KII
- 2.8σ effect in K*II
- Results:

 $B(B \to Kl^+l^-) = (0.78^{+0.24+0.11}_{-0.20-0.18}) \times 10^{-6}$

 $B(B \to K^* l^+ l^-) = (1.68^{+0.68}_{-0.58} \pm 0.28) \times 10^{-6}$

Preliminary

$< 3.0 \times 10^{-6}$ @ 90% C.L.

August 15, 2002

Search for $B \rightarrow I^+I^-$

- Highly suppressed in SM
 - − CKM suppression: b→d transition
 - Helicity suppressed $(m_l/m_B)^2$
- SM predictions for: e⁺e⁻ ~10⁻¹⁵, μ⁺μ⁻ ~10⁻¹⁰
- Require two high momentum leptons (lepton ID) with good vertex information

Search for $B \rightarrow I^+I^-$

- Backgrounds from real leptons in cc decays, π→μ misidentification, 2 photon processes
- Suppress continuum background with thrust angle and magnitude
- Cuts optimized for best upper limit
- Results from ~60M BB events

	N _{GSB}	N _{SigBox}	N _{BG}	90% CL Upper Lim
$B \rightarrow e^+e^-$	25	1	0.60 ± 0.24	3.3×10^{-7}
$B \to \mu^+ \mu^-$	26	0	0.49±0.19	$2.0 imes 10^{-7}$
$B \to e^{\pm} \mu^{\overline{\mp}}$	37	0	0.51±0.17	2.1×10^{-7}

August 15, 2002

Search for B+ $\rightarrow K^+ \nu \bar{\nu}$

- Nearly pure EW flavor changing neutral current
 - Nearly free from strong interaction effects
 - Small theoretical uncertainties
 - − SM Theory: $B(B^+ \rightarrow K^+ \nu \nu) \approx 3.8 \times 10^{-6}$
- Final state has two neutrinos
 - Difficult to reconstruct tag the other B and search for the signal in the recoil
 - Tag with $B^{-} \rightarrow D^{0} I_{V}(X)$ (i.e. D^{*} , ...)
 - Require high momentum K⁺ in recoil (need PID!)
 - Cut on remaining neutral energy in recoil and angle between kaon and tag lepton

$B^+ \rightarrow K^+ \nu \overline{\nu}$ Results

 $(\sigma_{\mathrm{m(D0)}})$

<u>-</u>10

8

-2

Signal

Box

- Define signal and sideband regions in D⁰ mass vs E_{left}
- Signal efficiency ~0.1%
- 60M BB pairs

2 events observed in the data (2.2 expected)

Preliminary

 $m(D^0)^{Rec}$ - $m(D^0)^{PDG}$ Sideband -10 0.25 0.5 0.75 1 1.25 1.5 1.75 Remaining neutral Energy (GeV)

BABAR

$B(B^+ \otimes K^+ m) < 9.4 \ 10^{-5} \ (90\% \ CL)$

Search for $B \rightarrow \gamma \gamma$

- Example of electroweak annihilation
- SM expectation *B*~0.1 to 2.3 x 10⁻⁸
- Cuts on R2, thrust and B production angles to suppress background
- Select photon pairs not consistent with π^0 or η
- 22M BB pairs
- B(B→γγ) < 1.7 x 10⁻⁶

PRL 87 241803(2001)

August 15, 2002

Charmless Hadronic B Decays

- Dominant amplitudes are CKM suppressed tree and gluonic penguins
- Continuum background dominates
 - Modes high multiplicity and those with π^0 s (and other neutrals) also suffer from BB background
- Kinematic and topological variables reject continuum
- PID crucial to separate kaons and pions
- Most analyses use ML fit to extract signal
- Typical observables: m_{ES} , ΔE , Fisher, PID, resonance masses and helicities

Charmless 2-body Decays

- $B \rightarrow \pi^+ \pi^- CP$ eigenstate extract sin($2\alpha_{eff}$)
- Need all the $\pi\pi$ final states to go from α_{eff} to α via isospin analysis
- $K\pi$ final states may yield information on CP phase γ (Fleischer-Mannel bound), and may have substantial direct CP violation
 - $A_{K\pi} \sim |P/T|sin(\gamma)sin(\delta)$ (δ=strong phase)
- Extract signal with ML fit using m_{ES} , ΔE , DIRC pulls, Fisher discriminant
 - Fit kaon and pion hypothesis yields (along with qq background) and rate asymmetries simultaneously

Contamination in $B \rightarrow \pi \pi$

- Penguin contamination of $B \rightarrow \pi\pi$ means we measure $sin2\alpha_{eff}$ instead of $sin2\alpha$
- Use isospin relations to "subdue" the penguins
 - All $\pi\pi$ states have either I=2 or 0
 - Gluonic penguins only contribute to I=0 ($\Delta I=1/2$)
 - $\pi^+\pi^0$ is pure I=2 (Δ I=1/2) so has only tree amplitude \rightarrow ($|A^{+0}| = |A^{-0}|$)
 - Requires measurement of all $\pi\pi$ decays each for B and \overline{B}

2-Body Results

Mode	N _{EVENTS}	Branching ratio (10⁻⁶)	A _{CP}
$B^0 \rightarrow \pi^+ \pi^-$	157 ± 19	$4.7\pm0.6\pm0.2$	
$B^0 \rightarrow K^+ \pi^-$	589 ± 30	17.9±0.9 ±0.7	-0.102 ±0.050 ±0.016
$B^0 \rightarrow K^+K^-$	1 ± 8	<0.6 (90% C.L.)	~88×10 ⁶ B pairs
$B^+ \rightarrow \pi^+ \pi^0$	125 ± 22	$5.5\pm1.0\pm0.6$	-0.03 ±0.18 ±0.02
$B^+ \rightarrow K^+ \pi^0$	239 ± 22	$12.8 \pm 1.2 \pm 1.0$	-0.09 ±0.09 ±0.01
$B^0 \rightarrow K^0 \pi^0$	86 ± 13	$10.4 \pm 1.5 \pm 0.8$	0.03 ±0.36 ±0.09
$B^0 \rightarrow \pi^0 \pi^0$	23 ± 10	<3.6 (90% C.L.)	
$B^+ \rightarrow K^+ K^0$	< 10	<1.3 (90% C.L.)	~60×10 ⁶ B pairs
$B^+ \rightarrow K^0 \pi^+$	172 ± 17	$17.5 \pm 1.8 \pm 1.3$	-0.17 ±0.10 ±0.02

• Observe a 2.5 σ effect (including systematics) in the search for B⁰ $\rightarrow \pi^0 \pi^0$

Preliminary

August 15, 2002

More on 2-Body results

- Projections in m_{ES} and ∆E
 Few hundred signal events out of 26K 2-prongs (mostly continuum)
- Can still get information α from limit on $\pi^0 \pi^0$
 - Grossmann-Quinn bound (assumes only isospin)

$$\sin^{2}(\boldsymbol{a}_{eff} - \boldsymbol{a}) < \frac{\frac{1}{2} \left[BR(B^{0} \rightarrow \boldsymbol{p}^{0} \boldsymbol{p}^{0}) + BR(\overline{B}^{0} \rightarrow \boldsymbol{p}^{0} \boldsymbol{p}^{0}) \right]}{BR(B^{\pm} \rightarrow \boldsymbol{p}^{\pm} \boldsymbol{p}^{0})}$$
$$< 0.61 @ 90\% \text{ C.L.} \Rightarrow \begin{vmatrix} \boldsymbol{a}_{eff} - \boldsymbol{a} \end{vmatrix} < 51^{\circ} @ 90\% \text{ C.L.}$$

August 15, 2002

"Quasi"-2-body Decays

 A 2-body B decay through one (or two) intermediate resonances

–e.q. B→ ¢K*

- ~70 combinations among the lowest lying vector and pseudoscalar nonets
 – All combinations of K, π, η, η' ρ, K*, φ
- Analysis very similar to $\pi\pi$, K π
- Additional information from resonance masses, helicities (in pseudoscalarvector decays)

 $B \rightarrow \phi K^{(*)}$

- CKM forbidden b→sss, proceeds via penguin only
- In SM, time-dependent asymmetry in φK⁰_S measures sin2β
 - But since this is pure penguin, potentially very sensitive to non-SM effects

August 15, 2002

Results for $B \rightarrow \phi K^{(*)}$

~ 22.7×10⁶ B pairs PRL 87 151801 (2001) $Br(B^{\pm} \rightarrow j K^{*\pm}) = (9.7 \pm_{-3.4}^{+4.2} \pm 1.7) \times 10^{-6}$ $Br(B^{0} \rightarrow j K^{*0}) = (8.6_{-2.4}^{+2.8} \pm 1.1) \times 10^{-6}$ ~ 60×10⁶ B pairs Preliminary $Br(B^{\pm} \rightarrow j K^{\pm}) = (9.2 \pm 1.0 \pm 0.8) \times 10^{-6}$ $Br(B^{0} \rightarrow j K_{s}^{0}) = (8.7_{-1.5}^{+1.7} \pm 0.9) \times 10^{-6}$ $Br(B^{\pm} \rightarrow j p^{\pm}) < 0.56 \times 10^{-6} (90\% C.L.)$

- (nearly) pure gluonic penguin observed
- $B \rightarrow \phi \pi$ both CKM and color suppressed
 - Theory BF ~10⁻⁹, a signal at these sensitivities could mean new physics

August 15, 2002

B $\rightarrow \omega$ h (h=K, π)

- Some mixture of CKM suppressed tree and penguin
 - Tree expected to dominate?
- Charged mode seems to be indecisive
 - First ω K observed (CLEO), then $\omega\pi$ (CLEO and BABAR)
- Results on 22M BB pairs PRL 87 21802(2001)
 - New result for ωK_{S}^{0} (60M BB pairs) first observation
 - All yields from likelihood fits

Mode	N _{signal}	S(o)	<i>B</i> (x10 ⁻⁶)
ωK+	$6.4^{+5.6}_{-4.4}$	1.3	<4
ωK ⁰	$26.6^{+7.7}_{-6.6}$	6.6	$5.9^{+1.7}_{-1.5}\pm0.9$
$\omega\pi^+$	$27.6^{+8.8}_{-7.7}$	4.9	$6.6^{+2.1}_{-1.8} \pm 0.7$
$\omega \pi^0$	$-0.9^{+5.0}_{-3.2}$	-	<3

August 15, 2002

Measurement $B \rightarrow \eta^{(\prime)} K^{(*)}$

- Penguin dominated, some tree
- First QCD penguin observed (by CLEO)
 - Observed because rates for $\eta' K$ (and ηK^*) much larger than expected
- Conjecture: interfering amplitudes
 - Enhance η'K, ηK*
 - Suppress η'K*, ηK
- Other hypotheses:
 - $-\eta$ as an approximate flavor singlet
 - QCD anomaly, gluon couples directly to η'
 - "charming" penguins, c quark enhanced in loop

Results for $B \rightarrow \eta^{(\prime)} K^{(*)}$

60M BB pairs for η' analyses, 22M for η

Three Body: B \rightarrow hhh, h= π^{\pm} , K[±]

- Analysis over full dalitz plot
- Cut based analysis analysis
- Measure all final states simultaneously and unfold to obtain branching fractions
- In addition to continuum background, B background from J/ψK, Dπ/DK, cross-feed
- Primary systematics in PID and tracking

3-Body Results

 In 56M BB pairs, measure branching fractions across the Dalitz plot

> $Br(B^{\pm} \to K^{\pm} p^{\mp} p^{\pm}) = (59.2 \pm 4.7 \pm 4.9) \times 10^{-6}$ $Br(B^{\pm} \to K^{\pm} K^{\mp} K^{\pm}) = (34.7 \pm 2.0 \pm 1.8) \times 10^{-6}$ $Br(B^{\pm} \to p^{\pm} p^{\mp} p^{\pm}) < 15 \times 10^{-6}$ $Br(B^{\pm} \to K^{\pm} K^{\mp} p^{\pm}) < 7 \times 10^{-6}$

Preliminary

Outlook

- With ~90M BB events in hand, many analyses to be updated to the full data set
 - Now sensitive to branching fractions of better than x 10⁻⁶
- Still much to be done to fill in the full spectrum of possible measurements
- Some "rare" analyses are becoming systematics limited – improved techniques will be needed to fully exploit the deluge of new data in the coming years
- Theoretical developments must keep pace
- The reward for continued efforts in this area could well be the first glimpse of new physics

Results I didn't have Time to Present

- B decays to DDK
 - $B(B^{0} \rightarrow D^{(*)}D^{(*)}K) = [4.3 \pm 0.3(\text{stat}) \pm 0.6(\text{sys})]\%$
 - $B(B^+ \rightarrow D^{(*)}D^{(*)}K) = [3.5 \pm 0.3(\text{stat}) \pm 0.5(\text{sys})]\%$

Color Suppressed B decays

- $B(B^{0} \rightarrow D^{0} \pi^{0}) = [2.9 \pm 0.3(\text{stat}) \pm 0.4(\text{sys})] \times 10^{-4}$
- $-B(B^{0}\rightarrow D^{0}\eta)=[2.4 \pm 0.4(stat) \pm 0.3(sys)]x10^{-4}$

 $-B(B^{0} \rightarrow D^{0} \omega) = [2.5 \pm 0.4(\text{stat}) \pm 0.3(\text{sys})] \times 10^{-4}$

Preliminary

- B decays to D_s^{(*)+}D^{*-}
 - $B(B^{0} \rightarrow D_{S}^{+}D^{*-}) = [1.03 \pm 0.14(\text{stat}) \pm 0.13(\text{sys}) \pm 0.26(\text{meson B})]\%$
 - $B(B^{0} \rightarrow D_{s}^{*+}D^{*-}) = [1.97 \pm 0.15(stat) \pm 0.30(sys) \pm 0.49(meson B)]\%$
 - Polarization with $D_s \rightarrow \phi \pi^+$: $G_L/G = [51.9 \pm 5.0(stat) \pm 2.8(sys)]\%$

•
$$B^{-} \rightarrow D^{0}_{(CP)} K^{-}$$

 $R \equiv \frac{Br(B^{-} \rightarrow D^{0}K^{-})}{Br(B^{-} \rightarrow D^{0}p^{-})} = (8.31 \pm 0.35 \pm 0.20)\%$
 $A_{CP} = 0.17 \pm 0.23^{+0.09}_{-0.07}$

August 15, 2002