Rare B Decays at BABAR

Paul C. Bloom
University of Colorado SLAC Summer Institute

What this talk will cover

- B decays with Penguins, Penguins and more Penguins
- No, not that kind of penguin
- This kind of penguin
- Electromagnetic Penguins

$-K^{*} \gamma, \rho / \omega \gamma, b \rightarrow s \gamma$
- Electroweak Penguins
- K($\left.{ }^{(}\right)+1$. Dileptons, $K v \bar{v}, ~ \gamma \gamma$
- QCD Penguins (charmless hadronic decays)
- Two and three-body final states

What this talk won't cover

- Vast breadth of physics from the B-Factories
- 45 minutes is about right to list them all
- You already heard about CP physics at BABAR in David Lange's talk on Wednesday
- Still, some things will have to go uncovered
- Tau physics
- Charm physics
- B mixing and lifetime
- Semileptonic B decays and CKM matrix elements
- B decays to charm and charmonium

CKM - Quark Couplings in the Standard Model

- Weak isospin doublet members ($b^{\prime}, s^{\prime}, d^{\prime}$) are $\left.\begin{array}{l}\text { states of mixed flavor } \\ \begin{array}{l}\text { The transformation } \\ \text { between mass } \\ \text { eigenstates (which }\end{array} \\ \mathbf{d}^{\prime} \\ \mathbf{s}^{\prime} \\ \mathbf{b}^{\prime}\end{array}\right)=\left(\begin{array}{lll}\mathbf{V}_{\mathrm{ud}} & \mathbf{V}_{\mathbf{u s}} & \mathbf{V}_{\mathrm{ub}} \\ \mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathrm{cs}} & \mathbf{V}_{\mathbf{c b}} \\ \mathbf{V}_{\mathbf{t d}} & \mathbf{V}_{\mathbf{t s}} & \mathbf{V}_{\mathrm{tb}}\end{array}\right)\left(\begin{array}{l}\mathbf{d} \\ \mathbf{s} \\ \mathbf{b}\end{array}\right)$ we observe) and flavor eigenstates is the matrix of Cabbibo, Kobayashi and Maskawa
- Unitarity implies 4 free parameters, one of which is a phase. One requirement of this condition is: $\mathbf{V}_{\mathrm{ud}} \mathbf{V}_{\mathrm{ub}}^{*}+\mathbf{V}_{\mathrm{cd}} \mathbf{V}_{\mathrm{cb}}^{*}+\mathbf{V}_{\mathrm{td}} \mathbf{V}_{\mathrm{tb}}^{*}=0$, which can be represented geometrically as a triangle...

The Unitarity Triangle: Getting at all the Angles - and Sides

- The B sector provides many options to learn about and (over-) constrain this triangle

Defining "rare", and Why these Decays are Interesting

- By rare, we mean decays in which there is neither open nor hidden charm
- $b \rightarrow u$ is CKM suppressed:

$$
\left|\mathbf{V}_{\mathrm{ub}} / \mathbf{V}_{\mathrm{cb}}\right|<0.10
$$

- $b \rightarrow s, d$ proceed only via higher order diagrams (penguins!)
- Basically, anything that does not involve $a b \rightarrow c$ transition
- Processes with tree diagrams that are CKM suppressed or forbidden are sensitive to Penguin amplitudes
- Example: $\mathrm{B}^{+} \rightarrow \eta^{\prime} \mathrm{K}^{+}$

- Particles that can't appear on-shell can appear in loops
- Top, Higgs, SUSY, ???
- Interfering amplitudes can expose new phases - they also complicate the interpretation of CP measurements

The PEP-II Asymmetric B-factory

3.1 GeV^{+}on $9 \mathrm{GeV} \mathrm{e}^{-}$, produce the $\Upsilon(4 \mathrm{~S})$ with a CM boost $<\beta \gamma>=0.55$

- Peak Luminosity $=4.60 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(3 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$ design $)$
- Positron current $=1775 \mathrm{~mA}$
- Electron current $=1060 \mathrm{~mA}$
- Number of bunches $=800$
- IP beam sizes $=147 \mathrm{~mm} \times 5 \mathrm{~mm}$

August 15, 2002

Data Sample(s)

- Full data set

- $81.2 \mathrm{fb}^{-1}$ onpeak
- ~88M BB pairs
- $9.6 \mathrm{fb}^{-1}$ offpeak
- Most analyses use only a subset for now
$\mathbf{r}(4 S)$ Energy Scan

August 15, 2002

The BABAR Detector

: 5 double side layers, 97\% efficiency, 15 mm z hit resolution
: 40 axial and stereo layers, $\sigma(\mathrm{dE} / \mathrm{dx})=7.5 \%$

$$
: \sigma\left(p_{\mathrm{T}}\right) / p_{\mathrm{T}}=0.13
$$

$\% \times \mathrm{p}_{\mathrm{T}}+0.45 \%$, $s\left(z_{0}\right)=65 \mathrm{~m} @ 1 \mathrm{GeV} / \mathrm{c}$: 144 quartz bars
: $6580 \mathrm{CsI}(\mathrm{TI})$ crystals $\sigma_{E} / E=$ $2.3 \% \cdot \mathrm{E}^{-1 / 4} \oplus 1.9 \%$
: 19 RPC layers, muon and K_{L} id

Paul C. Bloom

B Decays at the $\Upsilon(4 \mathrm{~S})$

- $\mathrm{r}(4 \mathrm{~S}) \rightarrow \mathrm{B}^{0} \overline{\mathrm{~B}}^{0}, \mathrm{~B}^{+} \mathrm{B}^{-} \sim 100 \%$ with $\mathrm{p}_{\mathrm{B}}^{*} \cong 325 \mathrm{MeV} / \mathrm{c}$
- In a two body B decay, daughters are produced back to back in the CM with $\mathrm{E}^{*} \cong 2.6 \mathrm{GeV}, \mathrm{p}=1.0$ to $4.4 \mathrm{GeV} / \mathrm{c}$ in the lab, depending on the daughter masses
- Kinematic signature for B decays - express energy and momentum conservation (within resolution) as:
$m_{\mathrm{ES}} \equiv \sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}}=m_{B}$

$$
\Delta E \equiv E_{B}^{*}-E_{\text {beam }}^{*}=0
$$

- $E_{\text {beam }}^{*}$ is more precisely measured than ΣE_{i}^{*}

Backgrounds

- Generic $b \rightarrow c$ backgrounds not a problem for most rare decay modes
- Heavier daughters \Rightarrow lower recoil energy
- Exception is modes with high multiplicity
- Some modes suffer from specific backgrounds, which can be controlled via selection criteria (e.g. $\psi \mathrm{K}^{*}$ in $\mathrm{K}^{*}+\mathrm{l}$)
- Principal backgrounds to rare decays originate from $\mathrm{q} \overline{\mathrm{q}}(\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c})$ production in the continuum
- Cross section for udsc $\sim 3.5 \mathrm{nb}, \Upsilon \sim 1 \mathrm{nb}$
- Fake signal arises from random track/neutral combinations
- Topology is "jet-like" as qव produced well above threshold
- B decays spherical in the CM, so...
- Exploit topological variables to suppress continuum background
- Fox Wolfram moments, B decay axis correlation with jet axis

$m_{E S}$ VS ΔE

- Signal clusters around $\Delta \mathrm{E}=0$ and $\mathrm{m}_{\mathrm{ES}}=\mathrm{m}_{\mathrm{B}}$
- Continuum background is more or less isotropic over the plane
- $\mathrm{m}_{\text {ES }}$ - "Argus" shape
$-\Delta \mathrm{E}$ - linear with negative slope
- B background populates the sidebands of $\Delta \mathrm{E}$
- Lose or gain a particle to "manufacture" the final state of interest

Event Shape

- Exploit spherical decay of the B vs "jettiness" of $q \bar{q}$ background
- Thrust, sphericity provide powerful separation between true B's and continuum background

More on Event Shape

- Additional information available if further continuum suppression is needed - and it often is
- Direction of B flight and B decay wrt the beam axis
- Angular energy flow
- Use of this and other定 information can be optimized via neural network or a Fisher discriminant

Separation after thrust cut

Particle Identification

- Separation of charged kaons and pions is crucial to most rare analyses - especially at high momentum
- Pions outnumber kaons in the continuum 7 to 1
- The DIRC measures the Cherenkov angle θ_{C} associated a track passing through a quartz radiator
- Well behaved pulls can be cut on, included in fits, or made part of a global selection which includes dE/dx from the tracking systems

Extracting a Signal (I)

- All rare analyses at BABAR are performed blind
- Don't look at the answer until the analysis is "finalized"
- Avoid experimenter's bias
- Event counting analysis

- Tune selection to optimize expected signal wrt estimated background (the experimental sensitivity or upper limit)
- Count events in $m_{E S}-\Delta E$ signal box
- Estimate continuum background from sidebands and subtract to obtain signal yield
- Best suited for analyses where large yields or good signal to background is expected

Extracting a Signal (II)

- In cases where a small yield is expected, or the backgrounds are large (or both), the technique of choice is an extended maximum likelihood fit

$$
L=\frac{e^{-\sum n_{j}}}{N!} \prod_{i=1}^{N} L_{i} \quad L_{i}=\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{n}_{\mathrm{j}} P_{j}\left(\vec{x}_{i}\right)
$$

- n_{j} : population for each species (signal and background)
- $P_{i}\left(x_{i}\right)$: Probability density function evaluated with a set of observables $\mathrm{x}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}\right.$, Fisher, etc ...)
- Statistical error on the event yield:

$$
\Delta(-2 \ln L)=1
$$

- Statistical significance ~ difference in $\Delta(-2 \ln L)$ when forced to null signal hypothesis (typically require a 4σ effect to claim an observation

Extracting a Signal (III)

- Key ingredient to ML fit are the Probability Density Functions
- PDFs must describe the data
- Determine signal PDFs from Monte Carlo
- Use control samples to study Data/MC agreement and adjust PDFs as necessary
- e.g. study inclusive samples of resonances in offpeak data to understand resonance line-shapes and resolutions
- Use plentiful $\mathrm{B} \rightarrow$ charm modes with useful topologies to understand $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$ and event shape variables.
$-\Rightarrow$ signal PDFs effectively derived from data
- Determine background PDFs from sideband and offpeak data

Results!

All results are preliminary unless reference cited

Electromagnetic Penguins

- $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma$ was the first penguin to be observed (CLEO)
- Measurement of branching fraction tests QCD
- Direct CP violation would indicate new physics
- Ratio of $B(\mathrm{~B} \rightarrow \mathrm{p} \gamma)$ to $B\left(\mathrm{~B} \rightarrow \mathrm{~K}^{*} \gamma\right)$ sensitive to $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$
- Inclusive measurement of $B(b \rightarrow s \gamma)$ constrains new physics
- The E_{γ} spectrum from $b \rightarrow s \gamma$ provides information on the mass and Fermi motion of the b quark within the B meson

$B \rightarrow K^{*} \gamma$

- All analyses require
- an isolated high energy photon with $1.5<\mathrm{E} \gamma<3.5 \mathrm{GeV}$
- Require EM-like shower profile
- Veto photons from π^{0}, η
- Reconstruct all K* decay modes
- Suppress continuum with cuts on thrust angle, B flight angle and K^{*} helicity, kaon ID

	$B\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0 \star} \gamma\right) / 10^{-5}$	$B\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \gamma \gamma\right) / 10^{-5}$	Acp
Theory(avg.)	7.5 ± 3.0	7.5 ± 3.0	$\|\mathrm{Acp}\|<0.005$
PRL 88,	4.23 ± 0.40 (stat.)	3.83 ± 0.62 (stat.)	$-0.17<$ Acp <0.08 (90\% C.L.) 161805(2002)
0.22 (sys.)	± 0.22 (sys.)	(90\%	

Searches for $B \rightarrow \rho \gamma$ and $\omega \gamma$

- Goal is to measure $\left|\mathrm{V}_{\mathrm{td}}\right| \mathrm{V}_{\text {ts }} \mid$ and compare to result from mixing analysis of B_{d} and B_{s} systems
- More challenging than $\mathrm{K}^{*} \gamma$
- Predicted branching fraction smaller by x50
- ρ is very broad resonance
- Backgrounds from $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma, \mathrm{~B} \rightarrow \rho \pi^{0}, \mathrm{~b} \rightarrow \mathrm{~s} \gamma$
- Significant theoretical errors (15-35\%) in extracting $\left|V_{t d} / V_{t s}\right|^{2}$
- Continuum background rejection with neural net
- Event shape, $\Delta \mathrm{z}$, flavor tag
- Kaon ID to veto $\mathrm{K}^{*} \gamma$
- Estimate signal with Maximum Likelihood fit

Results for $B \rightarrow p \gamma$ and $\omega \gamma$

- Analyzed sample of 84 million BB pairs
- No significant signals observed, so set 90% C.L. upper limits

	$B\left(\mathrm{~B} \rightarrow \rho^{0} \gamma\right)$	$B\left(\mathrm{~B} \rightarrow \rho^{+} \gamma\right)$	$B(\mathrm{~B} \rightarrow \omega \gamma)$
Theory	$0.5-0.75 \times 10^{-6}$	$0.8-1.5 \times 10^{-6}$	Same as $\rho^{0} \gamma$
BABAR	$<1.4 \times 10^{-6}$	$<2.3 \times 10^{-6}$	$<1.2 \times 10^{-6}$

Preliminary

- Combined limit $B(B \rightarrow \rho \gamma)<1.9 \times 10^{-6} @ 90 \%$ C.L.
- Assume $\left(B\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \gamma\right)=B\left(\mathrm{~B}^{0} \rightarrow \omega \gamma\right)=2^{*} B\left(\mathrm{~B}^{+} \rightarrow \mathrm{p}^{+} \gamma\right)\right)$
- Limit on CKM - $\left|\mathrm{V}_{\text {td }} / \mathrm{V}_{\text {ts }}\right|<0.036 @ 90 \%$ C.L.
- For discussion of theory errors, see Ali \& Parkhomenko (Eur Phys. J. C23:89 (2002))

Inclusive $b \rightarrow s \gamma$

- HQET: Quark-Hadron duality $\Rightarrow B(\mathrm{~b} \rightarrow \mathrm{~s} \gamma)=B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)$
- Theory: NLO $B(\mathrm{~b} \rightarrow \mathrm{~s} \gamma)=3.57 \pm 0.30 \times 10^{-4}$
- (Kep-ph/0207131)
- Models of E_{γ} spectrum parameterized in m_{b} and λ_{1}
- JETSET used to model X_{s} fragmentation
- Two approaches to the analysis
- Semi-inclusive (Σ exclusive states)
- Fully-inclusive
- In both cases, challenge is to reduce backgrounds while controlling systematic and theoretical uncertainties

Semi-Inclusive $b \rightarrow X_{s} \gamma$

- Sum over exclusive final states
- $\mathrm{K}^{+} / \mathrm{K}_{\mathrm{S}}{ }_{\mathrm{S}}+$ up to $3 \pi\left(1 \pi^{0}\right)$
- total of 12 final states
- 22M BB pairs
- Continuum from sideband, cross feed and BB background from MC
- MC efficiency corrected for observed discrepancy in X_{s} fragmentation

Semi-Inclusive $b \rightarrow X_{s} \gamma$ - Results

Fully Inclusive $b \rightarrow X_{s} \gamma$

- Suppress continuum by requiring fast lepton tag, angular separation between tag lepton and photon, missing E to suppress $B \rightarrow X I v$
- Results in 5\% efficiency with x1200 reduction in background
- Consider E_{γ} in range 2.1 - 2.7 to reduce model dependence
- Dominant systematic from BB backgrounds with fast π^{0}, η
- Continuum subtraction using off-peak data ($6.4 \mathrm{fb}-1$)
- 61M BB pairs ($54.6 \mathrm{fb}^{-1}$)

$$
\begin{aligned}
& B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{S}} \gamma\right)=(3.88 \pm 0.36(\text { stat }) \\
& \left. \pm 0.37(\text { sys })_{-0.23}^{+0.43}(\text { theory })\right) \times 10^{-4}
\end{aligned}
$$

Electroweak Penguins

- Processes that proceed via photons and ($\mathrm{W}^{ \pm}, \mathrm{Z}^{0}$)
- Strongly suppressed in the SM
- For many of these processes, theory errors are well controlled
- All are very sensitive to new physics

Measurement of $\left.\mathrm{B} \rightarrow \mathrm{K}^{(*)}\right)^{+1}$

- Branching fraction very sensitive to new physics
- Rate can vary by factor of two with some SM extensions
- $\mathrm{m}^{2}{ }_{| |}\left(=\mathrm{q}^{2}\right)$ distribution, forward-backward asymmetry also of considerable interest
- q^{2} distributions vary substantially for SM+
- Constructive and destructive interference effects
- Less model dependence than overall rate

[^0]
$\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mid+{ }^{-}$

- Many sources of background to control
- Charmonium K ${ }^{(*)}$
- Veto regions in $\Delta \mathrm{E}$ vs $\mathrm{m}_{\|}$
- Continuum

- Fisher with event shape and $\mathrm{M}(\mathrm{KI})$ (veto $\mathrm{D} \rightarrow \mathrm{Klv}$)
- Combinatorics from $\mathrm{B} \rightarrow \mathrm{XI}$
- Use B-likelihood built from $E_{\text {miss }}$, vertex, B production angle
- Peaking backgrounds from particle misID
- Veto $K^{(*)} \pi$ in D mass region and include in fit

$\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mid+{ }^{-}$

- Extract signal with likelihood fit to m_{ES} and ΔE
- 4.4 σ effect in KII
- 2.8 σ effect in K*II
- Results:

$B\left(\mathrm{~B} \rightarrow \mathrm{Kl}^{+} \mathrm{I}^{-}\right)=\left(0.78_{-0.20-0.18}^{+0.240 .11}\right) \times 10^{-6}$ $B\left(\mathrm{~B} \rightarrow \mathrm{~K}^{*} 1^{+} \mathrm{l}^{-}\right)=\left(1.68_{-0.58}^{+0.68} \pm 0.28\right) \times 10^{-6} \quad$ Preliminary

$$
<3.0 \times 10^{-6} @ 90 \% \text { C.L. }
$$

Search for $B \rightarrow++$

- Highly suppressed in SM
- CKM suppression: $b \rightarrow d$ transition
- Helicity suppressed $\left(m_{/} / m_{\mathrm{B}}\right)^{2}$
- SM predictions for:

$$
\mathrm{e}^{+} \mathrm{e}^{-} \sim 10^{-15}, \mu^{+} \mu^{-} \sim 10^{-10}
$$

- Require two high momentum leptons (lepton ID) with good vertex information

Search for $B \rightarrow++$

- Backgrounds from real leptons in cc decays, $\pi \rightarrow \mu$ misidentification, 2 photon processes
- Suppress continuum background with thrust angle and magnitude
- Cuts optimized for best upper limit
- Results from $\sim 60 \mathrm{M}$ BB events

	$\mathrm{N}_{\text {GSB }}$	$\mathrm{N}_{\text {SigBox }}$	$\mathrm{N}_{\text {BG }}$	90% CL Upper Limit
$\mathrm{B} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	25	1	0.60 ± 0.24	3.3×10^{-7}
$\mathrm{~B} \rightarrow \mu^{+} \mu^{-}$	26	0	0.49 ± 0.19	2.0×10^{-7}
$\mathrm{~B} \rightarrow \mathrm{e}^{ \pm} \mu^{\mp}$	37	0	0.51 ± 0.17	2.1×10^{-7}

Search for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \nu \bar{\nu}$

- Nearly pure EW flavor changing neutral current
- Nearly free from strong interaction effects
- Small theoretical uncertainties
- SM Theory: $B\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} v v\right) \approx 3.8 \times 10^{-6}$
- Final state has two neutrinos

- Difficult to reconstruct - tag the other B and search for the signal in the recoil
- Tag with $\mathrm{B} \rightarrow \mathrm{D}^{0} \operatorname{lv}(\mathrm{X})$ (i.e. D^{*}, \ldots)
- Require high momentum K^{+}in recoil (need PID!)

- Cut on remaining neutral energy in recoil and angle between kaon and tag lepton

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}$ Results

- Define signal and sideband regions in D^{0} mass vs $E_{\text {left }}$
- Signal efficiency ~0.1\%
- 60M BB pairs

2 events observed in the data
(2.2 expected)

Preliminary

$$
B\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \vee \stackrel{\rightharpoonup}{ }\right)<9.4 \times 10^{-5}(\mathbf{9 0 \%} \mathrm{CL})
$$

Search for $B \rightarrow \gamma$

- Example of electroweak annihilation
- SM expectation $B \sim 0.1$ to 2.3×10^{-8}
- Cuts on R2, thrust and B production angles to suppress background
- Select photon pairs not consistent with π^{0} or η
- 22M BB pairs
- $B(B \rightarrow \gamma \gamma)<1.7 \times 10^{-6}$

$$
\text { PRL } 87 \text { 241803(2001) }
$$

Charmless Hadronic B Decays

- Dominant amplitudes are CKM suppressed tree and gluonic penguins
- Continuum background dominates
- Modes high multiplicity and those with π^{0} s (and other neutrals) also suffer from BB background
- Kinematic and topological variables reject continuum
- PID crucial to separate kaons and pions
- Most analyses use ML fit to extract signal
- Typical observables: $m_{E S}, \Delta E$, Fisher, PID, resonance masses and helicities

Charmless 2-body Decays

- $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$CP eigenstate - extract $\sin \left(2 \alpha_{\text {eff }}\right)$
- Need all the $\pi \pi$ final states to go from $\alpha_{\text {eff }}$ to α via isospin analysis
- K π final states may yield information on CP phase γ (Fleischer-Mannel bound), and may have substantial direct CP violation
- $A_{k \pi} \sim|P / T| \sin (\gamma) \sin (\delta)$ ($\delta=$ strong phase)
- Extract signal with ML fit using $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, DIRC pulls, Fisher discriminant
- Fit kaon and pion hypothesis yields (along with qq background) and rate asymmetries simultaneously

Contamination in $\mathrm{B} \rightarrow \pi \pi$

- Penguin contamination of $B \rightarrow \pi \pi$ means we measure $\sin 2 \alpha_{\text {eff }}$ instead of $\sin 2 \alpha$
- Use isospin relations to "subdue" the penguins
- All $\pi \pi$ states have either $\mathrm{I}=2$ or 0
- Gluonic penguins only contribute to $\mathrm{I}=0(\Delta \mathrm{l}=1 / 2)$
- $\pi^{+} \pi^{0}$ is pure $\mathrm{I}=2(\Delta \mathrm{I}=1 / 2)$ so has only tree amplitude $\rightarrow\left(\left|A^{+0}\right|=\left|A^{-0}\right|\right)$
- Requires measurement of all $\pi \pi$ decays each for B and \bar{B}

Gronau and London, Phys. Rev. Lett. 65, 3381 (1991)

2-Body Results

Mode	$N_{\text {EVENTS }}$	Branching ratio $(\times \mathbf{1 0} \mathbf{0})$	$A_{C P}$
$\mathrm{~B}^{0} \rightarrow \pi^{+} \pi^{-}$	157 ± 19	$4.7 \pm 0.6 \pm 0.2$	
$\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{+} \pi \pi^{-}$	589 ± 30	$17.9 \pm 0.9 \pm 0.7$	$-0.102 \pm 0.050 \pm 0.016$
$\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$	1 ± 8	$<0.6(90 \%$ C.L. $)$	$\sim 88 \times 10^{6} \mathrm{~B}$ pairs
$\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{0}$	125 ± 22	$5.5 \pm 1.0 \pm 0.6$	$-0.03 \pm 0.18 \pm 0.02$
$\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0}$	239 ± 22	$12.8 \pm 1.2 \pm 1.0$	$-0.09 \pm 0.09 \pm 0.01$
$\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0} \pi^{0}$	86 ± 13	$10.4 \pm 1.5 \pm 0.8$	$0.03 \pm 0.36 \pm 0.09$
$\mathrm{~B}^{0} \rightarrow \pi^{0} \pi^{0}$	23 ± 10	$<3.6(90 \%$ C.L. $)$	
$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0}$	<10	$<1.3(90 \%$ C.L. $)$	$\sim 60 \times 10^{6} \mathrm{~B}$ pairs
$\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+}$	172 ± 17	$17.5 \pm 1.8 \pm 1.3$	$-0.17 \pm 0.10 \pm 0.02$

- Observe a 2.5σ effect (including systematics) in the search for $\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}$

Preliminary

More on 2-Body results

- Projections in $m_{E S}$ and $\Delta \mathrm{E}$
- Few hundred signal events out of 26 K 2 -prongs (mostly continuum)
- Can still get information α from limit on $\pi^{0} \pi^{0}$
- Grossmann-Quinn bound (assumes only isospin)

$$
\begin{array}{r}
\sin ^{2}\left(\alpha_{\text {eff }}-\alpha\right)<\frac{\frac{1}{2}\left[B R\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)+B R\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)\right]}{B R\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)} \\
<0.61 @ 90 \% \mathrm{C} . \mathrm{L} . \Rightarrow\left|\mathrm{a}_{\text {eff }}-\mathrm{a}\right|<51^{\circ} @ 90 \% \text { C.L. }
\end{array}
$$

"Quasi"-2-body Decays

- A 2-body B decay through one (or two) intermediate resonances
- e.q. $B \rightarrow \phi K^{*}$
- ~70 combinations among the lowest lying vector and pseudoscalar nonets
- All combinations of $K, \pi, \eta, \eta^{\prime} \rho, K^{*}, \phi$
- Analysis very similar to $\pi \pi, \mathrm{K} \pi$
- Additional information from resonance masses, helicities (in pseudoscalarvector decays)

$B \rightarrow \phi K^{(*)}$

- CKM forbidden $\mathrm{b} \rightarrow \mathrm{ss} s$, proceeds via penguin only
- In SM, time-dependent asymmetry in $\phi K^{0}{ }_{s}$ measures sin2 β
- But since this is pure penguin, potentially very sensitive to non-SM effects

Results for $\mathrm{B} \rightarrow \phi \mathrm{K}^{(*)}$

$$
\begin{aligned}
& \sim 22.7 \times 10^{6} B \text { pairs } \begin{array}{l}
\text { PRL } 87151801(2001) \\
\operatorname{Br}\left(B^{ \pm} \rightarrow \varphi K^{* \pm}\right)=\left(9.7 \pm_{-3.4}^{+4.2} \pm 1.7\right) \times 10^{-6} \\
\operatorname{Br}\left(B^{0} \rightarrow \varphi K^{* 0}\right)=\left(8.6_{-2.4}^{+2.8} \pm 1.1\right) \times 10^{-6} \\
\sim \sim 60 \times 10^{6} B \text { pairs } \quad \text { Preliminary } \\
\operatorname{Br}\left(B^{ \pm} \rightarrow \varphi K^{ \pm}\right)=(9.2 \pm 1.0 \pm 0.8) \times 10^{-6} \\
\operatorname{Br}\left(B^{0} \rightarrow \varphi K_{S}^{0}\right)=\left(8.7_{-1.5}^{+1.7} \pm 0.9\right) \times 10^{-6} \\
\operatorname{Br}\left(B^{ \pm} \rightarrow \varphi \pi^{ \pm}\right)<0.56 \times 10^{-6}(90 \% \text { C.L. })
\end{array}
\end{aligned}
$$

- (nearly) pure gluonic penguin observed
- $\mathrm{B} \rightarrow \phi \pi$ both CKM and color suppressed
- Theory BF $\sim 10^{-9}$, a signal at these sensitivities could mean new physics

$B \rightarrow \omega h(h=K, \pi)$

- Some mixture of CKM suppressed tree and penguin
- Tree expected to dominate?
- Charged mode seems to be indecisive
- First $\omega \mathrm{K}$ observed (CLEO), then $\omega \pi$ (CLEO and BABAR)
- Results on 22M BB pairs PRL 87 21802(2001)
- New result for ωK^{0} (60 M BB pairs) - first observation
- All yields from likelihood fits

Mode	$\mathrm{N}_{\text {signal }}$	$\mathrm{S}(\sigma)$	$B\left(\times 10^{-6}\right)$
$\omega \mathrm{K}^{+}$	$6.4_{-44}^{+5.6}$	1.3	<4
$\omega \mathrm{~K}^{0}$	$26.6_{-6.6}^{+7.7}$	6.6	$5.9_{-1.5}^{+1.7} \pm 0.9$
$\omega \pi^{+}$	$27.6_{-7.7}^{+8.8}$	4.9	$6.6_{-1.8}^{+2.1} \pm 0.7$
$\omega \pi^{0}$	$-0.9_{-3.2}^{+5.0}$	-	<3

Measurement $\mathrm{B} \rightarrow \boldsymbol{\eta}^{\left({ }^{(}\right)} \mathrm{K}^{(*)}$

- Penguin dominated, some tree
- First QCD penguin observed (by CLEO)
- Observed because rates for $\eta^{\prime} K$ (and ηK^{*}) much larger than expected
- Conjecture: interfering amplitudes
- Enhance $\eta^{\prime} K, \eta K^{*}$
- Suppress $\eta^{\prime} K^{*}, \eta K$
- Other hypotheses:
- η ' as an approximate flavor singlet
- QCD anomaly, gluon couples directly to η^{\prime}
- "charming" penguins, c quark enhanced in loop

Results for $B \rightarrow \eta^{\left({ }^{(}\right)} \mathrm{K}^{(*)}$

- 60M BB pairs for η ' analyses, 22 M for η

Mode	$\mathrm{N}_{\text {EVENTS }}$	Branching ratio $\left(\times 10^{-6}\right)$	$\mathrm{M}_{\mathrm{ES}}\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$ B mass (GeV)
$\mathrm{B}^{+} \rightarrow \eta^{\prime} \mathrm{K}^{+}$	445 ± 26	$67 \pm 5 \pm 5$	
$\mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}^{0}$	135 ± 15	$46 \pm 6 \pm 4$	
$\mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}^{* 0}$	5.2 ± 3.4	<13 (90\% C.L.)	
$\mathrm{B}^{+} \rightarrow \eta \mathrm{K}^{+}$	12.9 ± 5.7	<6.4 (90\%C.L.)	
$\mathrm{B}^{+} \rightarrow \eta \pi^{+}$	8.0 ± 5.9	<5.2 (90\%C.L.)	
$\mathrm{B}^{0} \rightarrow \eta \mathrm{~K}^{0}$	5.7 ± 3.3	<12 (90\%C.L.)	
$\mathrm{B}^{0} \rightarrow \eta \mathrm{~K}^{* 0}$	20.5 ± 6.3	$19.8_{-5.6}^{+6.5} \pm 1.5$	
$\mathrm{B}^{+} \rightarrow \eta \mathrm{K}^{*+}$	14.3 ± 6.6	$22.1{ }_{-9.2}^{+11.1} \pm 3.2$	
		Preliminary	
August 15, 2002		Paul C. Bloom SSI - Secrets of the B Meso	

Three Body: $\mathrm{B} \rightarrow \mathrm{hhh}, \mathrm{h}=\pi^{ \pm}, \mathrm{K}^{ \pm}$

- Analysis over full dalitz plot
- Cut based analysis analysis
- Measure all final states simultaneously and unfold to obtain branching fractions
- In addition to continuum background, B background from $\mathrm{J} / \psi \mathrm{K}$, $\mathrm{D} \pi / \mathrm{DK}$, cross-feed
- Primary systematics in PID and tracking

3-Body Results

$B \rightarrow K K K$

$B \rightarrow K \pi \pi$

Signal Region

On-res data
Preliminary

3-Body Results

- In 56M BB pairs, measure branching fractions across the Dalitz plot

$$
\begin{aligned}
& \operatorname{Br}\left(B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm}\right)=(59.2 \pm 4.7 \pm 4.9) \times 10^{-6} \\
& \operatorname{Br}\left(B^{ \pm} \rightarrow K^{ \pm} K^{\mp} K^{ \pm}\right)=(34.7 \pm 2.0 \pm 1.8) \times 10^{-6} \\
& \operatorname{Br}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{\mp} \pi^{ \pm}\right)<15 \times 10^{-6} \\
& \operatorname{Br}\left(B^{ \pm} \rightarrow K^{ \pm} K^{\mp} \pi^{ \pm}\right)<7 \times 10^{-6}
\end{aligned}
$$

Preliminary

Outlook

- With ~90M BB events in hand, many analyses to be updated to the full data set
- Now sensitive to branching fractions of better than $\times 10^{-6}$
- Still much to be done to fill in the full spectrum of possible measurements
- Some "rare" analyses are becoming systematics limited - improved techniques will be needed to fully exploit the deluge of new data in the coming years
- Theoretical developments must keep pace
- The reward for continued efforts in this area could well be the first glimpse of new physics

Results I didn't have Time to Present

- B decays to DDK
$-B\left(B^{0} \rightarrow D^{(*)} D^{(*)} \mathrm{K}\right)=[4.3 \pm 0.3$ (stat) ± 0.6 (sys) $] \%$
- $B\left(\mathrm{~B}^{+} \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{(*)} \mathrm{K}\right)=[3.5 \pm 0.3$ (stat) ± 0.5 (sys) $] \%$
- Color Suppressed B decays
$-B\left(B^{0} \rightarrow D^{0} \pi^{0}\right)=[2.9 \pm 0.3($ stat $) \pm 0.4($ sys $)] \times 10^{-4}$
$-B\left(B^{0} \rightarrow \mathrm{D}^{0} \eta\right)=[2.4 \pm 0.4$ (stat) ± 0.3 (sys) $] \times 10^{-4}$
Preliminary
$-B\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}^{0} \omega\right)=[2.5 \pm 0.4$ (stat) ± 0.3 (sys) $] \times 10^{-4}$
- B decays to $D_{S}{ }^{(*)+D^{*}}$
$-B\left(B^{0} \rightarrow D_{s^{+}} D^{*}\right)=[1.03 \pm 0.14$ (stat) ± 0.13 (sys) ± 0.26 (meson B$\left.)\right] \%$
- $B\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}^{*}\right)=[1.97 \pm 0.15$ (stat) ± 0.30 (sys) ± 0.49 (meson B$\left.)\right] \%$
- Polarization with $\mathrm{D}_{\mathrm{S}} \rightarrow \phi \pi^{+}: \mathrm{G}_{\llcorner } / \mathrm{G}=[51.9 \pm 5.0$ (stat) ± 2.8 (sys) $] \%$
- $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0}{ }_{(\mathrm{CP})} \mathrm{K}^{-} \quad R \equiv \frac{B r\left(B^{-} \rightarrow D^{0} K^{-}\right)}{B r\left(B^{-} \rightarrow D^{0} \pi^{-}\right)}=(8.31 \pm 0.35 \pm 0.20) \%$

$$
A_{C P}=0.17 \pm 0.23_{-0.07}^{+0.09}
$$

[^0]: SSI - Secrets of the B Meson

