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ABSTRACT

The GLAST Large Area Telescope [1], scheduled for launch in 2006, is a next gener-
ation space based gamma ray telescope which will improve in point source sensitivity
by a factor of 30 over that of EGRET [2] below 10 GeV, and extend beyond EGRET
up to 300 GeV. Thus GLAST offers a unique opportunity to discover WIMP dark
matter through precision studies of gamma rays produced in pair annihilations. The
most dense region of dark matter in our galaxy is currently thought to occur at the
center; in particular, dark matter should concentrate within 3 pc of the putative
supermassive black hole located at the SgrA* radio source [3]. In fact, the 2nd and
3rd EGRET catalogs contain a significant point source coincident with the Milky
Way galactic center within a resolution of 12 arcminutes [4]. The EGRET team
has determined that the spectral and temporal characteristics of this point source
are consistent with dark matter WIMP annihilations. More detailed analysis [5] has
determined that the magnitude and spectrum of the EGRET source is consistent
with relic WIMPs concentrated within 3 pc of the central supermassive black hole.
Furthermore, the SgrA* radio emission is consistent with the synchrotron radiation
expected from electrons and positrons produced in WIMP annihilations. If true,
then GLAST should be able to constrain the particle properties of the postulated
WIMP with 1 month of data.

∗ http://www-glast.stanford.edu
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The accretion of a collisionless collection of non-relativistic identical par-
ticles with asymptotic velocity v0 onto a central star of mass M was first exam-
ined by Zel’dovich and Novikov [6]. In particular, we can define a critical radius
rc = 2GM/v2

0. For distances r >> rc, the density varies little from the asymptotic
value; however, for r << rc the gravitational potential of the central mass focuses
the particles together, thus greatly increasing their density. Gondolo and Silk [3]
re-analyzed this situation in the context of dark matter particles focusing near the
putative supermassive black hole at the center of our galaxy [7]. For M = 2.6 × 106

solar masses rc = 3 pc for an asymptotic particle dark matter velocity v0 = 90 km/s.
The density inside of 3 pc is high enough to produce observable signals from particle
dark matter annihilation.

Figure 1: From [8]: circles repre-
sent various flux measurements and
upper limits of SgrA*. The four peaks
from left to right represent: syn-
chrotron radiation, Compton scatter-
ing, bremsstrahlung, pion production.
The dotted line is the spectrum cor-
responding to a standard thin accre-
tion disk with accretion rate 1e-4 so-
lar mass, and the short-dashed line is
thin disk with accretion rate 1e-9 solar
mass. The solid line is the advection
dominated accretion flow (ADAF).
The long dashed line shows ADAF
with pion peak artificially raised by
1 order of magnitude. Of course, all
of these models apply strictly to non-
dark matter accretion scenarios. The
Chandra observation in the 2-10 keV
band [9] is shown as the black box.

Multi-wavelength observational data from SgrA* has been compiled by
Narayan et al for comparison with various (non-dark matter) accretion models,
shown in figure 1. Silk et al [10, 5] has re-analyzed this data in terms of super-
symmetric (SUSY) particle dark matter. A good fit to radio and gamma ray data
has been found for typical particle dark matter parameters. In figure 2 we show
a comparison of EGRET data, SUSY model predictions, and GLAST sensitivity.
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With one month of data, GLAST should be able to probe most of the supersym-
metric parameter space. The final GLAST data sample should obtain an accuracy
of 10 arcseconds, which corresponds to 0.4 pc at the galactic center.

Figure 2: From [5]: EGRET data and
expected gamma ray flux from the
galactic center for various SUSY mod-
els. Variation with cusp slope is also
shown: γ = 0.05 (triangles), γ = 0.12
(diamonds), γ = 0.2 (dots), γ = 1.0
(squares)
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