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ABSTRACT

After reviewing some of the mathematical foundations and numerical difficulties fac-
ing lattice QCD, I review the status of several calculations relevant to experimental
high-energy physics. The topics considered are moments of structure functions,
which may prove relevant to search for new phenomena at the LHC, and several as-
pects of flavor physics, which are relevant to understanding CP and flavor violation.
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1 Introduction

Several areas of research in elementary particle physics (as well as nuclear physics and
astrophysics) require information about the long-distance nature of quantum chro-
modynamics (QCD). Sometimes this information can be gleaned from experiment,
but often what one needs, in practice, are ab initio calculations of the properties of
hadrons. In some cases one aims for a detailed understanding of QCD in its own
right. In others, one simply requires a reliable calculation of hadronic properties, so
that one can study electroweak interactions or new phenomena at short distances.

Mathematical physicists tell us that the best way to define gauge theories,
including QCD, is to start with a space-time lattice. The spacing between sites
is usually called a. If the finite grid has N3

S × N4 sites, then one has a finite box
size, L = NSa, and finite extent in time, L4 = N4a. Quarks are described by lattice
fermion fields located at the sites, denoted ψ(x); gluons are described by lattice gauge
fields located on the links from x to x + aµ̂, denoted Uµ(x). The key advantage to
the lattice is that local gauge invariance is simple. The fields transform as

ψ(x) �→ g(x)ψ(x), ψ̄(x) �→ ψ̄(x)g−1(x), (1)

Uµ(x) �→ g(x)Uµ(x)g−1(x+ aµ̂), (2)

so it is easy to devise gauge invariant actions, i.e., independent of g(x) [1]. If one
imagines a smooth underlying gauge potential Aµ(x) (as is used in continuum QCD),
the relation to the lattice gauge field is

Uµ(x) = P exp
∫ a

0
dsAµ(x+ sµ̂). (3)

Continuum QCD is defined from lattice QCD by taking a → 0 with L and hadron
masses fixed. Then one takes the infinite volume limit, L → ∞. If one is interested
in the chiral limit, mq → 0, it should be taken last. These limits are nothing radical:
the lattice provides an ultraviolet cutoff, and the finite volume an infrared cutoff.

The existence of these limits has not been proven rigorously, but, because of
asymptotic freedom, there is not much doubt that this procedure works. (If not, why
does QCD work at all?) The lattice formulation makes field theory mathematically
similar to statistical mechanics and, consequently, provides new tools. For example,
a finite lattice makes it possible to integrate the functional integral by Monte Carlo
methods. The expectation value of observable Φ may be written

〈Φ(φ)〉 =
1
Z

∫
DφΦ(φ)e−S(φ) � 1

Z

∑
i

Φ(φ(i))w(φ(i)) (4)
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where Z is chosen so that 〈1〉 = 1, and φ is an abbreviation for all fields, ψ, ψ̄, and U .
The right-most expression is a numerical approximation, with the sum running over
some set of field configurations. This numerical technique, though only one facet of
lattice gauge theory, is what most particle physicists mean by “lattice QCD.” So,
this talk is about tools need to make numerical calculations more reliable, and the
progress being made in calculations needed to interpret “physics in collision.”

It is not so easy to descend from the mathematical high ground down to
realistic, practical numerical calculations. Difficulties arise because QCD is a multi-
scale problem. Nature has not only the characteristic scale of QCD, ΛQCD, but also
a wide range of quark masses, leading to a hierarchy

mq � ΛQCD � mQ. (5)

As a dynamical scale, rather than a parameter, there is a range for the QCD scale.
Some benchmarks include the scale in the running coupling ΛMS ≈ 250 MeV, typical
hadron masses like mρ = 770 MeV, and the scale of chiral symmetry breaking
m2

K/ms = 2500 MeV. The strange quark, with ms ≈ 100 MeV, is light, and the up
and down quarks, with m̂ = 1

2(md +mu) = ms/24 and md > mu > 0, are especially
light. The bottom quark, with mb = 4.25 GeV, is heavy, and the top quark, with
mt = 175 GeV, is especially heavy. One can argue whether the charmed quark, with
2mc = 2.5 GeV, is heavy or not.

Cutoffs are needed to put the problem on a computer, and they introduce
two more scales. The idealized hierarchy is now

L−1 � mq � ΛQCD � mQ � a−1. (6)

It is impractical to expect a huge separation of scales in computational physics. To
explain why, some simple scaling laws are helpful. The memory required grows like
N3

SN4 = L3L4/a
4, and these large exponents come because we live in 3 + 1 space-

time dimensions. The CPU time needed to update gauge fields in the Monte Carlo
scales like a−(4+z), where z = 1 or 2, and the 4 again comes from the dimension of
space-time. The CPU time needed to compute quark propagators scales like m−p

q

where p = 1–3. The exponents z and p are non-zero because of properties of our
numerical algorithms, and it seems difficult to reduce them.

The first consequence of these scaling laws is that a−1 can be larger, but
not much larger, than ΛQCD. Similarly, mq and L−1 can be smaller, but not much
smaller. A more important consequence is that improved methodology pays off
enormously. For example, B physics with a−1 ∼ 3ΛQCD instead of 3mb saves a
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factor (mb/ΛQCD)6 > 212 in computing. Such improvements are not attained by
CPU power, but through new ideas. Moreover, in computational physics the need
for creativity means that computing facilities must be flexible, not just big.

So, we see that finite computer resources force us to consider the hierarchy

L−1 < mq < ΛQCD � mQ ∼ a−1, (7)

instead of the idealized one. One should emphasize that we know how to get from
the practical hierarchy (7) to physical results. The central idea is to let the computer
work on dynamics at the scale ΛQCD, and to use effective field theories to get the
rest. The computer runs, by necessity, with finite cutoffs and artificial quark masses.
With effective field theories, one can strip off the artifice, and replace it with the
real world. In doing so, one introduces theoretical uncertainties, but effective field
theories control the error analysis.

A more thorough exposition of this line of thinking can be found in a recent
review [2]. Here let us emphasize the role of effective field theories by listing some
of the big ideas in lattice of the last several years:

• Static limit and lattice NRQCD to treat heavy quarks

• Understanding lattice perturbation theory (to match at short distances)

• Non-perturbative implementation of the Symanzik effective field theory

• Continuum HQET to control heavy-quark discretization effects

• Novel applications of chiral perturbation theory

• Understanding chiral symmetry in lattice gauge theory

All but the last explicitly bring in effective field theories, and it resonates with the
usage of chiral perturbation theory to extrapolate light quark masses.

The exception to the rule of effective field theory is something called the
quenched approximation. Quenched QCD is a model, so the associated uncertainty
is difficult to estimate. For example, unquenched (usually nf = 2 not 3) calculations
of hadron masses, decay constants, etc., suggest changes of 0–20%. Fortunately,
the quenched approximation is going away. Within a few years, I imagine that
quenched calculations will no longer play an important role in our thinking about
non-perturbative QCD.

The rest of this paper looks at some calculations needed to interpret current
and future experiments. Moments of structure functions can help obtain better
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parton densities and, hence, better predictions of cross sections at the Tevatron and
LHC. Lattice calculations of these moments are covered in Sec. 2. In flavor physics,
the focus of many experiments, there is a pressing need for the hadronic matrix
elements needed in leptonic and semi-leptonic decays, and neutral meson mixing.
There are many of these, and Sec. 3 covers only a subset: form factors FB→D∗(1) and
f+(E) to obtain |Vcb| and |Vub| from B → D∗lν and B → πlν; and matrix elements
for neutral B, Bs, and K oscillations, need to constrain Vtd. Section 4 concludes
with a summary and some thoughts about the future.

2 Moments of Structure Functions

The rate for deeply inelastic lp scattering (DIS) depends on several structure func-
tions, which we shall generically denote F (x). x is the momentum fraction of the
struck parton, 0 ≤ x ≤ 1. In perturbative QCD, the F s can be related to process-
independent parton densities, which are used to predict cross sections for pp̄ and pp
collisions. The DIS data peter out for x > xmax ∼ 0.7, so, as sketched in Fig. 1(a),
the uncertainty explodes for the highest values of x. High x partons are needed to
produce high-mass particles. Modern methods for parton densities directly reflect
the lack of information [3]. They need independent (but QCD-based) knowledge of
the moments to constrain F (x) for x > xmax.

The operator product expansion relates the moments to local operators,
∫ 1

0
dx xn−1F (x,Q2) = Cn(Q2/µ2) 〈p|On|p〉(µ), (8)

where Cn is a short-distance Wilson coefficient that is calculated in perturbation
theory. The matrix element on the right-hand side should be “easy” to calculate: just
find a lattice operator Onlat with the same quantum numbers as On and calculate the

(a)
x

maxx

δF
/F

(b)

Figure 1: (a) Sketch of the uncertainty in measured structure functions, as a function
of x. (b) Comparison of chiral extrapolations for 〈x〉u−d; from Ref. [10]
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matrix element at several different lattice spacings. We have a detailed description
of lattice-spacing effects, namely,

〈p|Onlat|p〉(a) = Z−1
nm(µa)〈p|Om|p〉(µ) + aKnj〈p|O′

j|p〉
+ aKσFZ

−1
nm

∫
d4x 〈p|TOmq̄σFq(x)|p〉 +O(a2), (9)

based on an effective field theory introduced by Symanzik two decades ago [4].
Differences between lattice gauge theory, with a �= 0, and continuum QCD arise at
short distances comparable to a. They are lumped into short-distance coefficients
Znm, aKnj, and aKσF . The operators on the right-hand side are, in the Symanzik
effective field theory, defined with a continuum renormalization. Thus, in addition
to calculating the left-hand side, to obtain 〈p|Om|p〉 one must also compute the
normalization factor Znm and cope with the terms of order a.

We know how to calculate Znm, KσF , and Knj. They depend on details of
the lattice Lagrangian and the lattice operator Onlat. One can introduce parameters
(call them cSW and cnj) that directly influence KσF and Knj. Thus, one can ad-
justed cSW and cnj until KσF ≈ 0 and Knj ≈ 0. This procedure is called Symanzik
improvement [5]. There are two ways to compute the Zs and Ks. One is renor-
malized perturbation theory, which works because the Zs and Ks are short-distance
quantities. In this method, uncertainties of order αl

s remain. Usually, these days,
only one-loop calculations are available, so l = 2. Then it is helpful to apply the
Brodsky-Lepage-Mackenzie prescription [6] to sum up higher-order terms related to
renormalization parts. The other method is fully non-perturbative [7]. This sounds
as if it is exact, but there are uncertainties in the Ks of order a. For the matrix ele-
ment itself, this is just another error of order a2, of which there are many. The first
method has been used by the QCDSF collaboration [8], who have rather comprehen-
sive results for the proton. The second method has been used by a Zeuthen-Roma II
collaboration [9], for the first moment of the pion structure function.

The quenched results from QCDSF do not agree especially well with phe-
nomenology. It is, of course, tempting (and reasonable) to blame the quenched
approximation. Till now, one could also blame the phenomenological result, which
gets a significant contribution from the high-x region, where there are no experimen-
tal data. As it turns out, neither is the main culprit. Earlier this year the LHPC
and Sesam collaborations finished a comparison of quenched and unquenched (well,
nf = 2) calculations of many proton moments [10]. To save computer time, these
calculations are done with artificially large light quark mass (for the reasons ex-
plained above). The dependence on the light quark mass for a typical moment is
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shown in Fig. 1(b). Ref. [10] finds hardly any difference between unquenched and
quenched calculations for 0.7ms < mq < 1.6ms. It makes a huge difference, how-
ever, whether one follows one’s nose and extrapolates linearly, or whether one follows
chiral perturbation theory. The latter, of course, is correct. It has a pronounced
curvature for small quarks masses, of the form m2

π lnm2
π (and m2

π ∝ mq). With
chiral perturbation theory, the extrapolated result agrees with phenomenology.

3 Flavor Physics

The central question in flavor physics is whether the standard CKM mechanism
explains all flavor and CP violation (in the quark sector). One angle on this question
is over-constraint of the CKM matrix. Because the CKM matrix has only four free
parameters, the magnitudes of the CKM matrix elements dictate the CP violating
phase. Many of the magnitudes may be obtained from semi-leptonic decays, such as
K → πlν for the Cabibbo angle, B → D∗lν for |Vcb|, and B → πlν for |Vub|. CKM
elements on the third row (involving the top quark) enter through neutral meson
mixing, in the neutral K, B, and Bs systems. Here we will focus on B physics, with
a few remarks on K0-K̄0 mixing in Sec. 3.4.

For B physics, one must confront heavy quark discretization effects. Com-
pared to the lattice spacing, the b quark mass is large, mba > 1. The Symanzik
effective field theory, at least as usually applied, breaks down. Lattice gauge theory
does not break down, however, and the Isgur-Wise heavy-quark symmetries emerge,
in the usual way, for all mQa [11]. Thus, as long as mQ  ΛQCD, lattice gauge theory
can be described by heavy-quark effective theory (HQET). One can write [12]

Llat
.=

∑
n

Clat
n (mQ,mQa;µ)On(µ), (10)

where .= means “has the same matrix elements as.” In the same way

LQCD
.=

∑
n

Ccont
n (mQ;µ)On(µ). (11)

The difference is in the short-distance coefficients Cn. On the lattice there are two
short distances, a and m−1

Q , so the Clat
n depend on the ratio a/m−1

Q = mQa. On the
other hand, the operators On in Eqs. (10) and (11) are essentially the same.

One can therefore systematically improve lattice calculations of b-flavored
hadrons, by matching lattice gauge theory and continuum QCD such that

δCn = Ccont
n − Clat

n ≈ 0, (12)
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for the first several operators. HQET is, here, merely an analysis tool; details of
how HQET is defined and renormalized drop out of the difference. These ideas are
put to direct use in the Fermilab method [11, 12], which is based on Wilson fermions
and, thus, also possesses a smooth continuum limit. Similar ideas are put to use in
lattice NRQCD [13], which discretizes the continuum heavy-quark Lagrangian.

3.1 B → D∗lν, FB→D∗(1), and |Vcb|
To determine |Vcb| from the semi-leptonic decay B → D∗lν, one measures the dif-
ferential decay rate in w, which is the velocity transfer from the B to the D∗. Then,
one extrapolates to zero recoil, w = 1. Thus, one can summarize the experiment
by saying it measures |Vcb|FB→D∗(1), where FB→D∗(w) is a certain combination of
form factors. At zero recoil all form factors but hA1 are suppressed, so

FB→D∗(1) = hA1(1) = 〈D∗(v)|Aµ|B(v)〉. (13)

It should be “straightforward” to calculate this matrix element in lattice QCD. But
a brute force calculation of 〈D∗|Aµ|B〉 would not be interesting: similar matrix
elements like 〈0|Aµ|B〉 and (see below) 〈π|Vµ|B〉 have 15–20% errors.

At zero recoil heavy-quark symmetry constrains hA1(1) to take the form

hA1(1) = ηA

[
1 + δ1/m2 + δ1/m3

]
, (14)

where ηA is a short-distance coefficient, and the δ1/mn are (principally) long-distance
matrix elements in HQET at order 1/mn. HQET does not provide the tools to
calculate them, but with the insight from matching lattice gauge theory to HQET,
we have recently figured out how to do so [14]. Furthermore, since we incorporate
heavy-quark symmetry from the outset, and all our uncertainties scale as hA1 − 1.

From HQET, the structure of the 1/mn
Q corrections is

δ1/m2 = − 	V
(2mc)2 +

2	A
(2mc)(2mb)

− 	P
(2mb)2 (15)

δ1/m3 = − 	
(3)
V

(2mc)3 +
	
(3)
A Σ + 	

(3)
D ∆

(2mc)(2mb)
− 	

(3)
P

(2mb)3 (16)

where Σ = 1/(2mc)+ 1/(2mb) and ∆ = 1/(2mc)− 1/(2mb). In lattice gauge theory,
we seek objects whose heavy-quark expansions contain the 	s. From work on the
B → D form factor [15], we know certain ratios have small enough uncertainties.
Moreover, one can show via HQET that [12]

〈D|c̄γ4b|B〉〈B|b̄γ4c|D〉
〈D|c̄γ4c|D〉〈B|b̄γ4b|B〉 =

{
ηlat

V

[
1 − 	P ∆2 − 	

(3)
P ∆2Σ

]}2
, (17)
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〈D∗|c̄γ4b|B∗〉〈B∗|b̄γ4c|D∗〉
〈D∗|c̄γ4c|D∗〉〈B∗|b̄γ4b|B∗〉 =

{
ηlat

V

[
1 − 	V ∆2 − 	

(3)
V ∆2Σ

]}2
, (18)

〈D∗|c̄γjγ5b|B〉〈B∗|b̄γjγ5c|D〉
〈D∗|c̄γjγ5c|D〉〈B∗|b̄γjγ5b|B〉 =

{
η̌lat

A

[
1 − 	A∆2 − 	

(3)
A ∆2Σ

]}2
, (19)

and one-loop expansions of ηlat
V and η̌lat

A are available [16]. By calculating the ratios
for many combinations of the heavy-quark masses, we can fit to the HQET descrip-
tion on the right hand side to obtain all three 	s in δ1/m2 , and three of four 	(3)s
in δ1/m3 . We can then reconstitute hA1(1) with Eq. (14), finding

FB→D∗(1) = hA1(1) = 0.913+0.024
−0.017 ± 0.016+0.003

−0.014
+0.000
−0.016

+0.006
−0.014, (20)

where the uncertainties stem from statistics and fitting, HQET matching, lattice
spacing dependence, the chiral extrapolation, and the effect of the quenched ap-
proximation. Instead of adding these errors in quadrature, we prefer to take note
of a bound, FB→D∗(1) ≤ 1, and posit a Poisson distribution P (x) = Nx7e−7x,
x = [1 − FB→D∗(1)]/0.087 ≥ 0, for global fits of the CKM matrix [17].

3.2 B → πlν, f+(E), and |Vub|
To determine |Vub| from the semi-leptonic decay B → πlν, it is not just a rehash of
the previous section. The experimental rate is smaller, by a factor |Vub/Vcb|2, and
heavy-quark symmetry is not as constraining. Experiments should measure [18]

∫ Emax
l

Emin
l

dEl

∫ Emax
π

Emin
π

dEπ
d2Γ

dEldEπ

∝ |Vub|2
∫ Emax

π

Emin
π

dEπ p
3|f+(Eπ)|2, (21)

where Eπ = v · pπ is pion energy in the B rest frame, p2 = E2
π − m2

π, and El is
charged lepton energy. To determine |Vub| one needs a reliable calculation of the
form factor f+(E), which parameterizes the matrix element of the b → u vector
current. Any cut on the lepton variable is equally good [18].

Recently there have been several calculations of these form factors, using
several different methods [19, 20, 21, 22, 23]. Two of these works [19, 20] calculate
the matrix element with mQ around the charm mass, fit to a model for the Eπ

dependence, and extrapolate the model parameters with heavy-quark scaling. The
others appeal more directly to heavy-quark ideas, as discussed above. El-Khadra et
al. [21] use the Fermilab method, and the other two [22, 23] use lattice NRQCD.
Refs. [21, 22, 23] do not use a model for the Eπ dependence; instead a cut on Eπ is
used to control discretization effects.

An obvious challenge in these calculations arises from discretization errors
of the final-state pion, which grow as pπa. This makes it hard to get Eπ = 2.6 GeV.
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A possibility to circumvent this difficulty is to give B meson momentum [24]. For
example, if one chooses −pB = pπ = 800 MeV in the lattice frame of reference,
one can access the whole kinematic range. A less obvious, but also important,
challenge is the chiral extrapolation. It is not well understood and contributes
the largest systematic error in the calculation with the smallest quark masses [21].
The uncertainties on f+(E) are still 15–20% in the quenched approximation. But
there are no real technical roadblocks (for details, see Ref. [21]), so the errors will
be reduced while BaBar and Belle accumulate data. In the short term, it will be
interesting and important to compare similar lattice calculations for semi-leptonic
D decays to experimental results from CLEO-c.

3.3 Neutral B Mixing and |Vtd|
In the Standard Model, neutral meson mixing is sensitive to Vtd and Vts. A signifi-
cant recent development is the realization that the theoretical uncertainty in B0-B̄0

mixing has been underestimated. The culprit has been the chiral extrapolation,
which we have seen to be important in moments of structure functions.

In the Standard Model, the oscillation frequency for B0
d-B̄

0
d mixing is

∆md ∝ |Vtd|2Md (22)

where Mq = 〈B̄0
q |[b̄(1 − γµ)γ5q][b̄(1 − γµ)γ5q]|B0

q 〉. Phenomenologists usually write
Mq = 8

3m
2
Bq
f 2

Bq
BBq but lattice calculations give matrix elements Mq directly, and

fBq from 〈0|b̄γµγ5q|B0
q 〉. Nevertheless, it turns out to be useful to look separately at

fBq and BBq . Current world averages (from lattice QCD) are fBq = 198 ± 30 MeV
and BBq = 1.30 ± 0.12 [25]. So the error on |Vtd| from ∆md alone is ∼ 15%.

For some time, the conventional wisdom has said that most of the theo-
retical uncertainty cancels if one takes the ratio ∆ms/∆md. (It is anticipated that
∆ms will be measured at Run 2 of the Tevatron [26].) The ratio is

∆ms

∆md

=
∣∣∣∣Vts

Vtd

∣∣∣∣
2 mBs

mBd

ξ2, ξ2 =
f 2

Bs
BBs

f 2
Bd
BBd

. (23)

CKM unitarity says |Vts| = |Vcb| to good approximation, and |Vcb| is known to 2–
4%. Many authors believe the uncertainty in ξ to be less than 5%. Cancellations
do occur in the statistical error, and in systematics at short distances (a and m−1

b )
and—arguably—at medium distances (Λ−1

QCD). But they explicitly do not cancel at
long distances between m−1

s and m−1
d from light quarks in the Bs and B mesons.

Now, the quenched approximation does not work well at these long dis-
tances, and unquenched calculations are prohibitive at mq ∼ md. Thus, ξ isolates
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the contributions that are hardest to capture, and tries to get at them by extrap-
olating in mq. After studying the differences in chiral logarithms in real QCD and
the quenched approximation, Booth [27] and Sharpe and Zhang [28] sounded notes
of caution. Their analyses showed that chiral logarithms should induce curvature
as a function of light quark mass, which quenching would obscure. This curvature
has recently been observed in unquenched calculations (well, nf = 2 again), and
identified as a serious source of uncertainty [29].

It is not too difficult to grasp the problem. For convenience, let ξ = ξfξB,
where ξf = fBs/fBd

, ξ2
B = BBs/BBd

. Chiral perturbation theory says that

ξf (r) − 1 = m2
ss(1 − r)

[
1
2f2 − 1 + 3g2

BB∗π

(4πfπ)2 l(r)
]
, (24)

where m2
ss = 2m2

K −m2
π, r = mq/ms measures the light quark mass in units of the

strange mass, fπ is the pion decay constant, and gBB∗π is the B-B∗-π coupling. The
function l(r) contains chiral logarithms:

(1 − r)l(r) = 1
4(1 + r) ln [(1 + r)/2] + 1

12(2 + r) ln [(2 + r)/3] − 3
4r ln(r)

Bs mixing: Bs ↔ B∗K Bs ↔ B∗
sη

Bd mixing: B ↔ B∗
sK B ↔ B∗η B ↔ B∗π

(25)

and each term arises from the virtual corrections given beneath it. All other con-
tributions are described well enough by linear behavior in r and are lumped into
the constant f2. The ratio ξ2

B is described by an expression similar to Eq. (24),
except that the chiral log is multiplied by 1 − g2

BB∗π. Unquenched lattice calcula-
tions [29, 30] are not yet good enough to determine directly the coefficients of the
chiral logs. Sinéad Ryan and I have suggested taking them from phenomenology
instead [31]. We invoke heavy-quark symmetry, which says the B-B∗-π coupling
should be roughly the same as the D-D∗-π coupling. Then the recent measurement
of the D∗ width yields g2

DD∗π = 0.35 [32]; we take g2
BB∗π = 0.35 ± 20%. We obtain

the constant f2 from the slope of ξf (r) around 0.5 < r < 1.0, where quenched and
unquenched calculations are in good agreement. We also analyze ξ2

B in the same
manner. Finally, we find

ξ = 1.32 ± 0.10 (chiral log extrapolation) (26)

from the chiral log fit. Previously, one had tried linear fits, which would have given

ξ = 1.15 ± 0.05 (conventional linear extrapolation) (27)

for the same input. The difference is illustrated in Fig. 2(a). One sees that the
uncertainty of 5% [as in Eq. (27)] certainly was underestimated, and also that the
central value is probably quite different from the conventional 1.15.
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3.4 Kaon Physics

Two theoretical developments of the past few years have opened the way for a wider
range of kaon calculations. One is a method for exploiting finite-volume effects to
calculate phase shifts in K → ππ (and other quasi-elastic processes) [33]. The other
is the formulation of lattice fermions with good chiral symmetry [34, 35, 36]. With
these new tools, we may be able to obtain, at last, quantitative results for such long-
standing problems as the ∆I = 1

2 rule and the matrix elements needed to compute
ε′/ε in the Standard Model.

Ref. [33] (and earlier papers by Lüscher) base a formalism for calculating
final-state phases on three insights. The first is that energy levels in finite volumes
are discrete. The second is that phase shifts arise at hadronic distances of order
1 fm, remote from the box size L > 1 fm. Lastly, there is a kinematical, albeit
very non-trivial, set of L-dependent relationships between the phase shifts and the
energy levels. As a result, one can extract the (elastic) phase shifts from the L
dependence of the discrete energy spectrum. Unfortunately, practical application to
QCD requires box sizes L = 2–6 fm, so it will not be feasible soon.

In many kaonic matrix elements, chiral symmetry is important, for example
for maintaining a simple relation between lattice operators and their counterparts in
continuum QCD. In 1982 Ginsparg and Wilson derived a sufficient condition for chi-
ral symmetry on the lattice [37]. For a long time the Ginsparg-Wilson relation defied
solution, buy now there are at least two realizations, the “fixed-point action” [35],
and “overlap fermions” [36]. Another method, “domain-wall fermions” [34], is re-
lated to the former and has exponentially small violations of the Ginsparg-Wilson
relation. Two lattice collaborations have large-scale calculations of BK (defined
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Figure 2: Neutral meson mixing. (a) Comparison of chiral extrapolations of ξ [31].
(b) BK vs. a2, with results from JLQCD [40], CP-PACS [38], and RBC [39].
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analogously to BB) with domain-wall quarks. In Fig. 2, published results from
CP-PACS [38] and RBC [39] are compared to classic work of JLQCD (with Kogut-
Susskind quarks) [40]. The lattice spacing dependence seems gentler for domain-wall
fermions. From looking at the plot, a rough estimate of an average would be

BK(NDR, 2 GeV) = 0.58 ± 0.06 (28)

which encompasses also Ref. [41]. This uncertainty could easily be reduced, by
using, say, 3–5 lattice spacings with domain-wall (or overlap) fermions, and taking
the continuum limit. One should also keep in mind that these calculations have been
done in the quenched approximation, and with degenerate quarks of mass ms/2.

4 Conclusions and Prospects

Although the foundation of lattice QCD is sound, some difficulties arise when turn-
ing the idealized theory into a computation tool. Errors are introduced at short and
long distances. They are controlled by effective field theories, however, providing
reliable methods to obtain physical predictions. A wide variety of calculations in
the quenched approximation have allowed us to learn how control short-distance
effects: both for light quarks and for heavy quarks. Now that several (partially)
unquenched calculations are available, other issues are becoming clearer, particu-
larly the chiral extrapolation of light quark masses. One can be optimistic that
unquenched calculations—with solid, transparent analyses of all uncertainties—will
become available to help interpret experiments with high-energy collisions.

One upcoming program is especially noteworthy vis a vis lattice QCD. In
the next few years, CLEO-c [42] will measure leptonic and semi-leptonic decays of
D and Ds mesons to a few per cent. Lattice QCD has a chance to predict their
results, perhaps with comparable accuracy. An especially interesting combination
is fD→Klν

+ (E)/fDs (and the Cabibbo-suppressed cousin fD→πlν
+ (E)/fD). The CKM

matrix drops out from the measurements, and non-Standard physics is unlikely.
Thus, one has direct tests of non-perturbative QCD. The ratio fDs/fD is also in-
teresting, because it tests the chiral extrapolation of ξ in B-B̄ mixing. Successful
comparisons of lattice calculations and CLEO-c will give confidence in other appli-
cations of lattice QCD, such as B physics and moments of the parton densities.
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