
Semileptonic B decays and V_{ub}/V_{cb}

Youngjoon Kwon

(Yonsei Univ. / Belle)

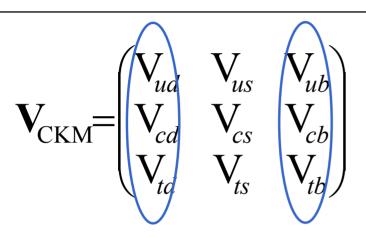
- Introduction
- Experimental tools
- Current status of measurements
- Prospects for improvements
- Conclusions

Parameters of the minimal Standard Model

- 17 free parameters of the Electroweak interactions
 - $-G_F$, α , $\sin^2\theta_W$
 - 3 lepton masses
 - 6 quark masses
 - 4 quark flavor mixing parameters (a.k.a. CKM)
 - m(Higgs)
- 10 of these are related with "quark flavors"

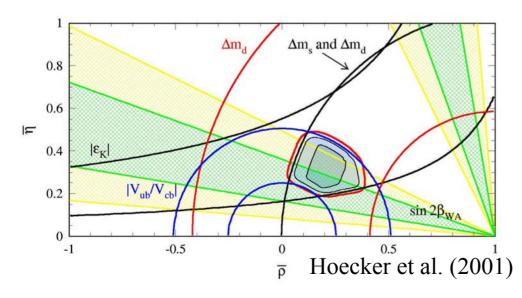
 i.e. we don't know much about flavor sector in the SM after all these years of learning...

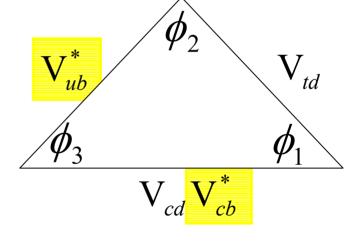
Flavor mixing and CKM matrix


- For quarks,
 - weak interaction eigenstates ≠ mass eigenstates
 - flavor mixing through CKM matrix

Wolfenstein parametrization
$$\mathbf{V}_{\text{CKM}} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

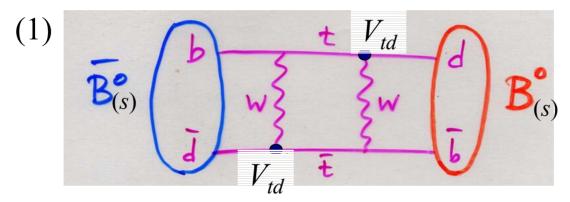
$$|\lambda| \approx O(0.1)$$
3 real parameters (λ, A, ρ) and 1 phase (η)



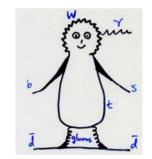

The Unitarity Trianlge

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$V_{ud} \cong V_{tb} \cong 1$$



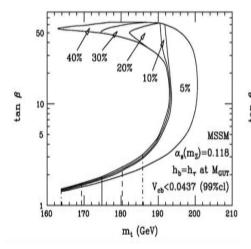
* other triangles are difficult to measure

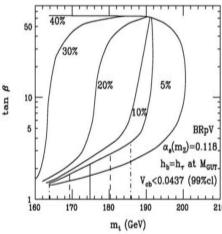

Experimental determinations

- only the sides, in this talk

V_{td} is very interesting and important for the unitarity triangle. But I will leave V_{td} for others to cover.

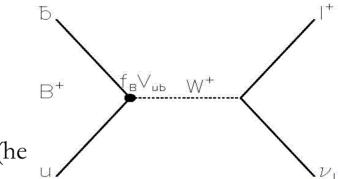
(2)
$$R_{K^*/\rho} \equiv \frac{BR(B \to \rho \gamma)}{BR(B \to K^* \gamma)} \propto \left| \frac{V_{td}}{V_{ts}} \right|^2$$




 \blacksquare and focus on V_{cb} and V_{ub} .

Any theoretical constraints?

- Of course, there is a *unitarity constraint*, 8-)
- Other than unitarity, CKM elements are free parameters in the minimal SM, but there are some predictions beyond SM
 - Anderson, Raby, Dimopoulos & Hall (PRD 47, R3702)
 - simliar analysis by Barger, Berger & Ohmann (PRD 47, 1093)
 - also, recently, by Diaz, Ferrandis & Valle (NPB 573, 75)



- using zero texture ansatz for fermion mass matrices
- predictions on m(top), tan b, and V_{cb}
- they found no solution with $V_{ch} < 0.039$

Experimental tools for V_{ub} and V_{cb}

- For V_{ub} , the cleanest mode might be fully leptonic B decays but, $B^+ \to \ell^+ \nu$
 - uncertainty in f_B
 - BR is very small for

$$\ell = e, \ \mu$$
- or
$$for \ B(B^+ \to \ell^+ \nu) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

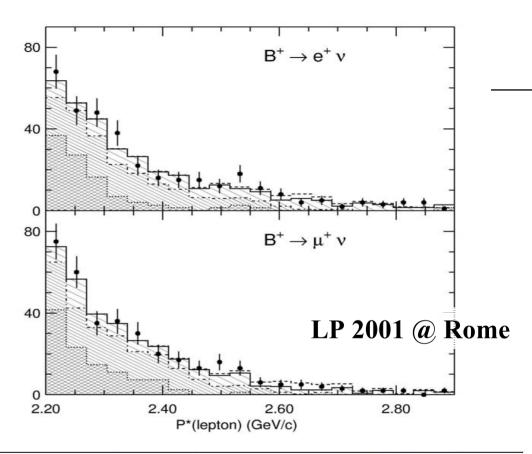
$$B \rightarrow \tau \nu$$

$B^+ \to \ell^+ \nu$: existing results

$\Gamma(e^+ u_e)/\Gamma_{ m total}$						Γ_{10}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$<1.5 \times 10^{-5}$	90	ARTUSO	95	CLE2	e^+e^-	$\Upsilon(4S)$
$\Gamma(\mu^+ u_{\pmb{\mu}})/\Gamma_{total}$						Γ_{11}/Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	33
$<2.1\times10^{-5}$	90	ARTUSO	95	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$
$\Gamma(au^+ u_{ au})/\Gamma_{total}$						Γ_{12}/Γ
$\Gamma(au^+ u_ au)/\Gamma_{ ext{total}}$		DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₁₂ /Γ
	<u>CL%_</u> 90	DOCUMENT ID 27 ACCIARRI				
VALUE	90	27 ACCIARRI	97F		$e^+e^- ightarrow$	
<i>VALUE</i> <5.7 × 10 ⁻⁴ • • • We do not use the $<1.04 \times 10^{-2}$	90	27 ACCIARRI	97F s, fits	L3 s, limits,	$e^+e^- ightarrow$	Z
<u>VALUE</u> <5.7 × 10 ⁻⁴ • • • We do not use the	90 ne following	²⁷ ACCIARRI g data for averages	97F s, fits 95D	L3 s, limits, ARG	$ \begin{array}{c} e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \end{array} $	Z $\Upsilon(4S)$
<i>VALUE</i> <5.7 × 10 ⁻⁴ • • • We do not use the $<1.04 \times 10^{-2}$	90 ne following 90	27 ACCIARRI g data for averages ²⁸ ALBRECHT	97F s, fits 95D 95	L3 s, limits, ARG CLE2	$ \begin{array}{c} e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ \end{array} $	Z Υ(4S) Υ(4S)

²⁷ ACCIARRI 97F uses missing-energy technique and $f(b \rightarrow B^-) = (38.2 \pm 2.5)\%$ **PDG 2000**

< 8.4 x 10⁻⁴ 90% CLEO (2001) PRL 86, 2950

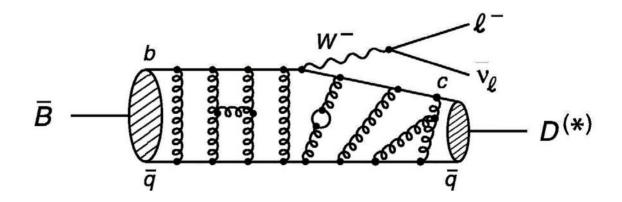


 $^{^{28}}$ ALBRECHT 95D use full reconstruction of one B decay as tag.

²⁹ BUSKULIC 95 uses same missing-energy technique as in $\overline{b} \to \tau^+ \nu_{\tau} X$, but analysis is restricted to endpoint region of missing-energy distribution.

 $B^+ \rightarrow \ell^+ \nu$

Preliminary new results from Belle (2001)


$\overline{\text{Mode}}$	Signal	Signal	Branching fraction
	$\operatorname{Efficiency}(\%)$	\mathbf{yield}	upper limit (90% CL)
$\overline{e^+ u}$	13.1 ± 1.1	$1.5 \pm 7.5 \pm 0.5$	4.7×10^{-6}
$\mu^+ u$	13.5 ± 1.2	$9.4\pm6.3\pm1.9$	6.5×10^{-6}

Semileptonic B decays for V_{ub} and V_{cb}

Semileptonic B decays provide the best opportunity for measuring $|V_{ub}|$ and $|V_{cb}|$,

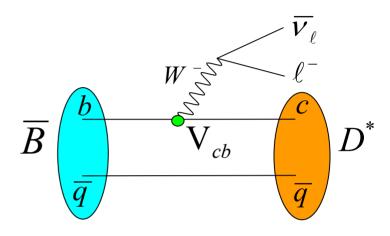
since the strong interaction effects are much simplified due to the two leptons in the final state

■ Both inclusive and exclusive analyses can be used.

Exclusive vs. Inclusive

- Exclusive decays need to know form factors

Both should be measured!

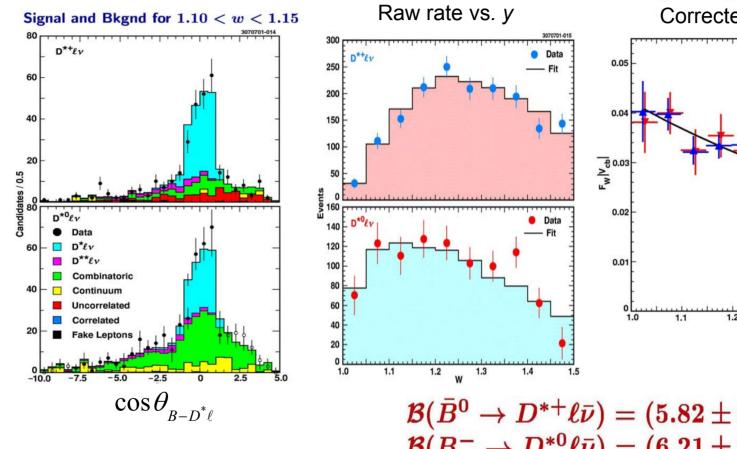

V_{cb} (Exclusive)

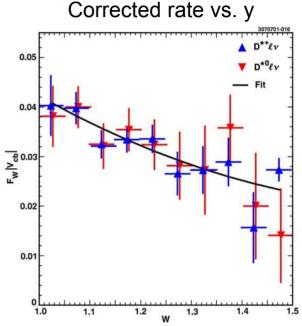
Main concept

- consider $B \to D^* \ell \nu$
- differential decay rate in y

$$\frac{d\Gamma}{dy} = K(y)F^{2}(y)|V_{cb}|^{2}$$

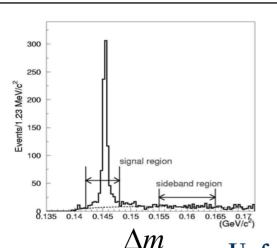
$$y = v_{B} \cdot v_{D^{*}} = \frac{M_{B}^{2} + M_{D^{*}}^{2} - q^{2}}{2M_{B}M_{D^{*}}}$$
• $K(y)$: known function
• $F(y)$: Form-factor


$$F(y) \equiv F(1) f(\rho, y)$$

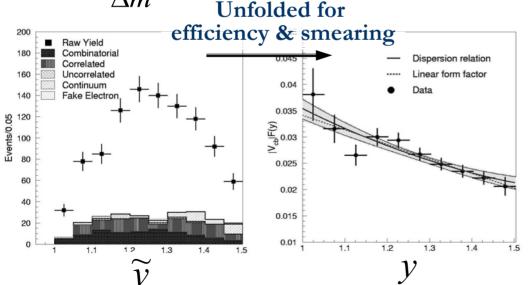

HQET
$$\rightarrow$$
 $F(1) = 1$ as $m_b \rightarrow \infty$

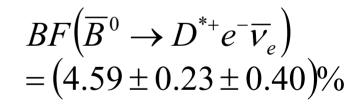
$$F(1) = 1 + O(\alpha_S / \pi) + \delta_{1/m_b^2} + \delta_{1/m_b^3}$$

V_{cb} (Exclusive) – CLEO



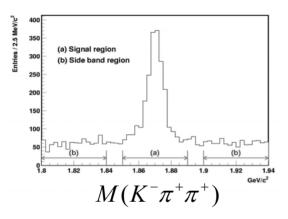
$$\mathcal{B}(ar{B}^0 o D^{*+}\ellar{
u}) = (5.82\pm0.19\pm0.37)\% \ \mathcal{B}(B^- o D^{*0}\ellar{
u}) = (6.21\pm0.20\pm0.40)\% \ F(1)|V_{cb}| = (4.22\pm0.13\pm0.18) imes 10^{-2} \
ho^2 = 1.61\pm0.09\pm0.21$$

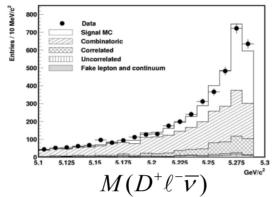

V_{cb} (Exclusive) – Belle $\overline{B}^0 \to D^{*+}e^-\overline{\nu}_e$

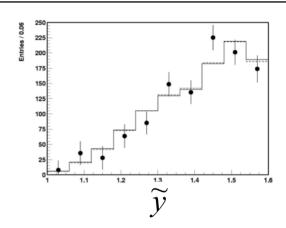


$$M_{\text{miss}}^{2} = M_{\bar{B}^{0}}^{2} + M_{D^{*+}e^{-}}^{2} - 2E_{\bar{B}^{0}}E_{D^{*+}e^{-}} < 1 \text{ (GeV)}^{2}$$

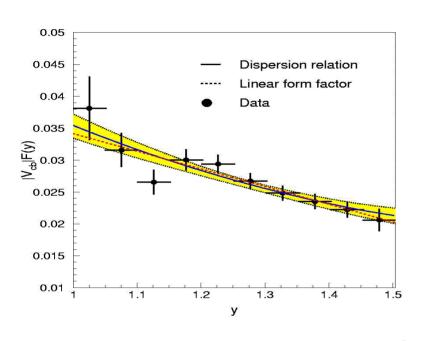
$$\cos \theta_{\bar{B}^{0},D^{*+}e^{-}} = \frac{2E_{\bar{B}^{0}}E_{D^{*+}e^{-}} - M_{\bar{B}^{0}}^{2} - M_{D^{*+}e^{-}}^{2}}{2|\mathbf{p}_{\bar{B}^{0}}||\mathbf{p}_{D^{*+}e^{-}}|} < 1$$

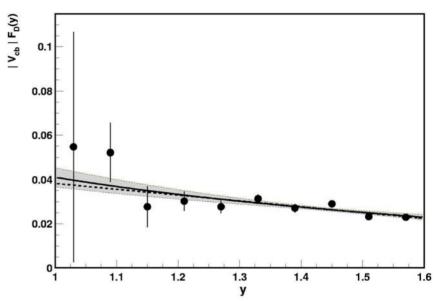

 $|V_{cb}|F(1) = (3.54 \pm 0.19 \pm 0.18) \times 10^{-2}$ $\rho_{A_1}^2 = 1.35 \pm 0.17 \pm 0.19$





V_{cb} (Exclusive) – Belle $\overline{B}^0 \to D^+ \ell^- \overline{\nu}_e$


- similar physics process as in $B \to D^* \ell \nu$
- using full neutrino reconstruction based on detector hermiticity


$$egin{aligned} E_{ ext{miss}} &= 2E_{ ext{beam}} - \Sigma E_i, \ m{p}_{ ext{miss}} &= -\Sigma m{p}_i, \ M_{ ext{miss}}^2 &= E_{ ext{miss}}^2 - |m{p}_{ ext{miss}}|^2 \end{aligned}$$

$$BF(\overline{B}^{0} \to D^{+}\ell^{-}\overline{\nu}) = (2.13 \pm 0.12 \pm 0.39)\%$$

 $F_{D}(1)|V_{cb}| = (4.11 \pm 0.44 \pm 0.52) \times 10^{-2}$

$D^*\ell v$ and $D^+\ell v$ (Belle)

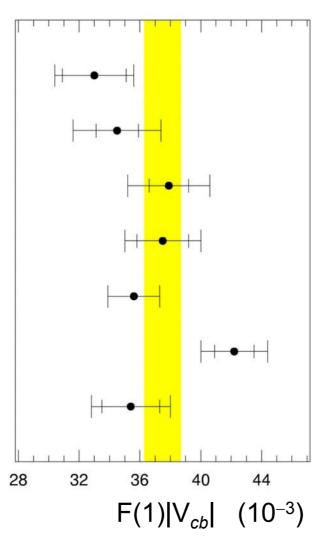
$$\frac{F_D(1)}{F_{D^*}(1)} = \begin{cases} 1.12 \pm 0.12 \pm 0.12 \text{ (Linear form factor)} \\ 1.16 \pm 0.14 \pm 0.12 \text{ (Caprini } et \ al. \text{ form factor)}, \end{cases}$$

$$\hat{\rho}_{D}^{2} - \hat{\rho}_{D^{*}}^{2} = \begin{cases} -0.12 \pm 0.18 \pm 0.13 \text{ (Linear form factor)} \\ -0.23 \pm 0.29 \pm 0.20 \text{ (Caprini } et \ al. \text{ form factor)}, \end{cases}$$

|V_{cb}| Exclusive Summary

ALEPH

DELPHI


OPAL(i)

OPAL(e)

LEP average

CLEO

Belle

V_{cb} with Inclusive decays

main procedure

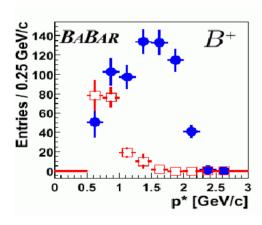
- $\Gamma_{\rm sl} \equiv \Gamma(B \to X_c \ell \nu)$ calculable with OPE Chay, Georgi, Grinstein (1990)
- no $O(1/m_b)$ corrections
- perturbative corrections known to $O(\alpha_s^2 \beta_0)$
- non-perturbative parameters λ_1 , $\bar{\Lambda}(m_b)$

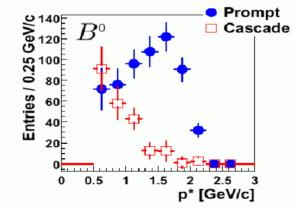
$$\Gamma_{\rm sl} = 0.3689 \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left[1 + 0 \times \frac{1}{m_b} + O\left(\alpha_s^2 \beta_0\right) + O\left(\frac{1}{m_b^2}\right) \right]$$

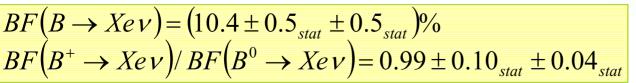
- **master formula** Bigi, Shifman, Uraltsev (1997)
 - LEP(x4), BaBar, Belle

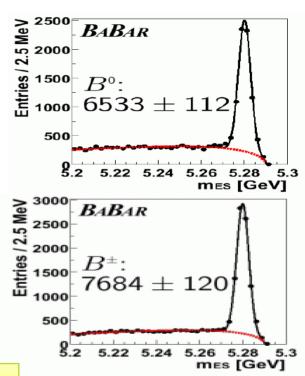
$$|V_{cb}| = 0.0411 \sqrt{\frac{\mathcal{B}(B \to X_c \ell \nu)}{0.105} \frac{1.55}{\tau_B(ps)}} \left(1 \pm 0.015_{pert} \pm 0.010_{m_b} \pm 0.012_{1/m_b^3}\right)$$

- using moments to obtain HQET parameters
 - CLEO (2001)

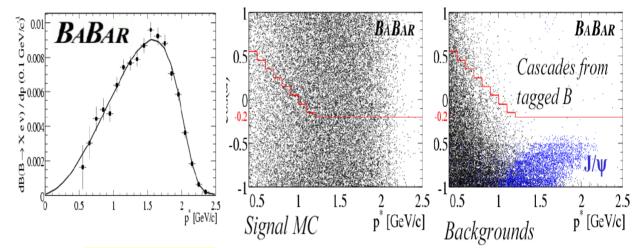



V_{cb} inclusive methods (1)

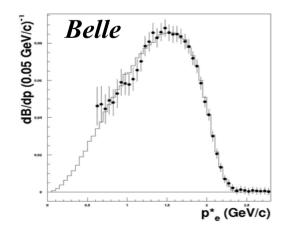

LEP average


$$BF(b \to X\ell \nu) = (10.56 \pm 0.11_{stat} \pm 0.18_{stat})\%$$

- BaBar two methods
 - (1) full reconstruction of the other B
 - (2) lepton tagging method (*next page*)



Purity B⁰: (84.4 ± 0.4) % Purity B[±]: (81.6 ± 0.4) %



V_{cb} inclusive (2)

with lepton-tagging (BaBar, Belle)

$$BF(b \to X\ell \nu) = (10.82 \pm 0.21_{stat} \pm 0.38_{stat})\%$$

$$\frac{dN_{+-}}{dp} = N_{tag}\eta(p)\varepsilon_{k1}(p)\left[\frac{dB(b\to x\ell\nu)}{dp}(1-\chi) + \frac{dB(b\to c\to y\ell\nu)}{dp}\chi\right]$$
$$\frac{dN_{\pm\pm}}{dp} = N_{tag}\eta(p)\varepsilon_{k2}(p)\left[\frac{dB(b\to x\ell\nu)}{dp}\chi + \frac{dB(b\to c\to y\ell\nu)}{dp}(1-\chi)\right]$$

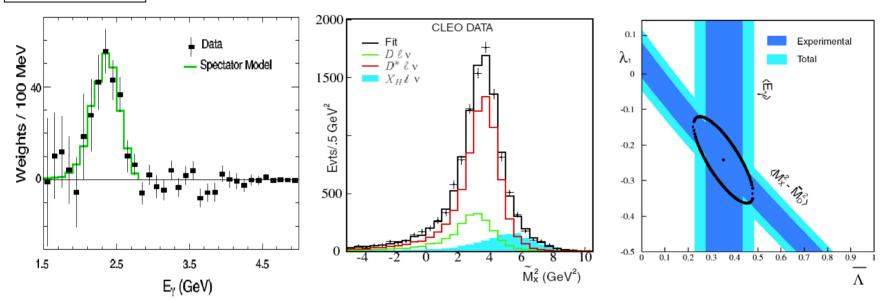
$$BF(b \to X\ell \nu) = (10.86 \pm 0.14_{stat} \pm 0.47_{stat})\%$$

V_{cb} from M_X moments and $b \rightarrow s\gamma$

CLEO

 $\Gamma(\bar{B} \to X_c \ell \bar{\nu})$ can be written in the form

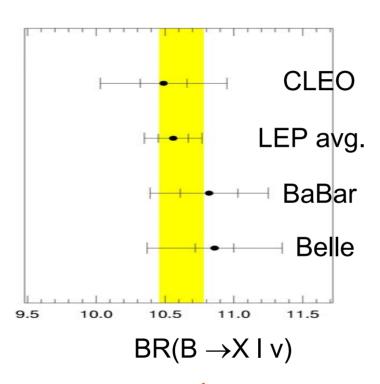
$$\Gamma_{SL}^{c} = \frac{G_F^2 |V_{cb}|^2 M_B^5}{192\pi^3} \left[\mathcal{G}_0 + \frac{1}{M_B} \mathcal{G}_1(\bar{\Lambda}) + \frac{1}{M_B^2} \mathcal{G}_2(\bar{\Lambda}, \lambda_1, \lambda_2) + \frac{1}{M_B^3} \mathcal{G}_3(\bar{\Lambda}, \lambda_1, \lambda_2 | \rho_1, \rho_2, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4) + \mathcal{O}\left(\frac{1}{M_B^4}\right) \right]$$


- Use theoretical estimates for $\rho_1, \rho_2, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4$
- and use the following for $\Lambda, \lambda_1, \lambda_2$

$$\langle (M_X^2 - \bar{M}_D^2) \rangle$$
 of the $\bar{B} \to X_c \ell \bar{\nu}$ mass spectrum $\langle E_{\gamma} \rangle$ of the $b \to s \gamma$ energy spectrum

V_{cb} from M_X moments and $b \rightarrow s\gamma$

CLEO


$$\lambda_1 = -0.236 \pm 0.071 \pm 0.078 \text{ GeV}^2$$

 $\overline{\Lambda} = 0.35 \pm 0.07 \pm 0.10 \text{ GeV}$

For the experimental determination of Γ_{sl} , we use: $\mathcal{B}(B \to X_c \ell \nu) = (10.39 \pm 0.46)\%$ [19], $\tau_{B^{\pm}} = (1.548 \pm 0.032)$ ps [15], $\tau_{B^0} = (1.653 \pm 0.028)$ ps [15], $f_{+-}/f_{00} = 1.04 \pm 0.08$ [20], giving $\Gamma_{sl} = (0.427 \pm 0.020) \times 10^{-10}$ MeV.

$$|V_{cb}| = (4.04 \pm 0.09 \pm 0.05 \pm 0.08) \times 10^{-2}$$

| V_{cb}| Inclusive Summary

personal average

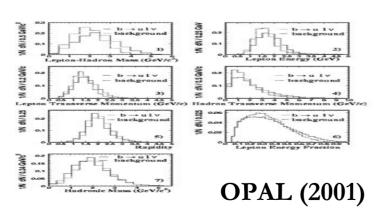
$$BR(B \rightarrow X I v) = 10.62 \pm 0.16$$
 (%)

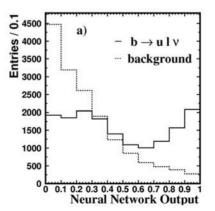
personal average

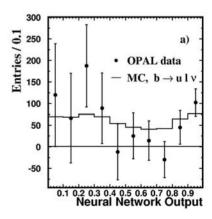
$$|V_{cb}| = 40.6 \pm 0.9 (10^{-3})$$

Compare with exclusive average $|V_{cb}| = 41.1 \pm 1.3 \pm 1.9 (10^{-3})$

| V_{ub}| measurements


- lacksquare V_{ub} vs. V_{cb}
 - $\sim 99\%$ of all B decays occur via $b \rightarrow c$ transition
 - $\sim 1\%$ of all B decays occur via $b \rightarrow u$ transition
- \mathbf{V}_{ub} is much harder to measure
 - for exclusive, HQET doesn't work very well
 - → large form factor uncertainty
 - for inclusive, $b \rightarrow c$ background is dominant, therefore, have to look at very limited phase-space region
 - → theoretical prediction (with cuts) is not reliable




|V_{nb}| LEP results

Main features

- Measure $B \to X_u \ell \nu$ and convert it to V_{ub}
- $X_u \ell \nu$ final states are separated from $X_c \ell \nu$ using jet shape variables
- no single variable is good enough combining several with neural networks
- u/c discrimination is mostly based on the properties of the hadronic system
- analyses are sensitive to the whole lepton spectrum
- estimation of large charm background uncertainty is critical

| V_{ub}| LEP results

• Combining the LEP results,

$$\mathcal{B}(B \to X_u \ell \nu) = (1.71 \pm 0.31_{(\text{exp.})} \pm 0.37_{(b \to c)} \pm 0.21_{(b \to u)}) \times 10^{-3}$$

• Using the OPE-based formula (Uraltsev et al.),

$$|V_{ub}| = 0.00445 \sqrt{\frac{\mathcal{B}(B \to X_u \ell \nu)}{0.002} \frac{1.55 \text{ps}}{\tau_B}} \times (1 \pm 0.020_{\text{QCD}} \pm 0.035_{m_b})$$

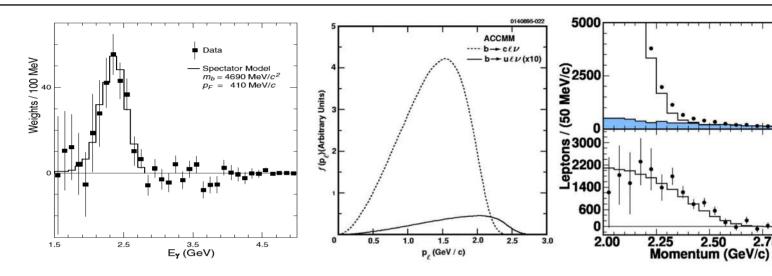
= $(4.09^{+0.59}_{-0.69}) \times 10^{-3}$

- comments
 - * 17% total fractional error
 - * 11% comes from $b \to c$ modelling
 - \star 4% from theory

$|V_{ub}|$ at $\Upsilon(4S)$

- Lepton momentum endpoint analysis (CLEO, 1993)
 - * clean $b \to u$, but $p_{\ell} > 2.3 \text{ GeV/}c$ results in
 - ★ large uncertainty from extrapolation (model-dependence)
 - * with $\mathcal{L}_{on} = 0.9 \text{ fb}^{-1}$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.076 \pm 0.008_{\text{exp}} \pm 0.016_{\text{thy}}$$


- Exclusive $B \to \pi \ell \nu$, $\rho \ell \nu$ decays (CLEO, 1996, 2000)
 - ★ relying on detector hermiticity for missing neutrino
 - ★ more coverage of phase-space, but
 - ★ uncertainty in the form-factor
 - \star with $\mathcal{L}_{\rm on} = 3.1 \; {\rm fb}^{-1}$

source	fractional error on $ V_{ub} $
exp. syst.	9%
thy. extrapolation	8%
thy. form-factor	15%
total	20%

$$\mathcal{B}(B^0 \to \rho^- \ell^+ \nu) = \left(2.57 \pm 0.29^{+0.33}_{-0.46} \pm 0.41\right) \times 10^{-4}$$
$$|V_{ub}| = \left(3.25 \pm 0.14^{+0.21}_{-0.29} \pm 0.55\right) \times 10^{-3}$$

$|V_{ub}|$ from the lepton end-point, revisited (CLEO, 2001)

measure $\mathcal{B}(B \to X_u \ell \nu) (\equiv \mathcal{B}_{bu})$ in a p_ℓ interval Δp (2.2 < p_{ℓ} < 2.6 GeV/c)

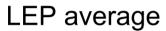
$$\Delta \mathcal{B}_{bu} = f_u(\Delta p) \mathcal{B}_{bu}$$

• reduce (extrapolation) error in $f_u(\Delta p)$ by using $b \to s\gamma$ (Neubert, et al.)

$$\mathcal{B}(b \to u\ell\nu, E > E_c) \propto \left| \frac{V_{ub}}{V_{ts}V_{tb}} \right|^2 \int_{E_c}^{M_B/2} E_{\gamma}N(E_{\gamma})dE_{\gamma \bullet} \sim 10\% \text{ from } \Delta \mathcal{B}_{bv}$$

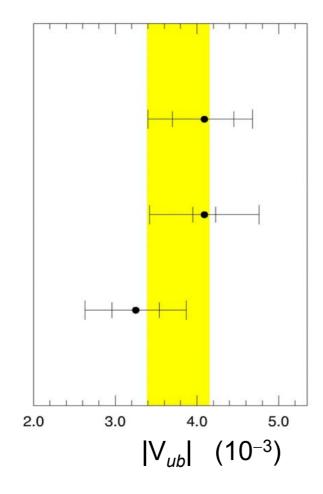
•
$$\Delta \mathcal{B}_{bu} = (2.35 \pm 0.15 \pm 0.45) \times 10^{-4}$$

•
$$f_u(\Delta p) = 0.138 \pm 0.034$$


•
$$|V_{ub}| = (4.09 \pm 0.14 \pm 0.66) \times 10^{-3}$$

• total frac. error on
$$|V_{ub}| \sim 16\%$$

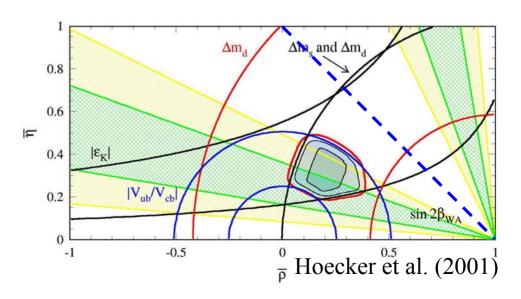
•
$$\sim 10\%$$
 from $\Delta \mathcal{B}_{bu}$



$|V_{ub}|$ Summary

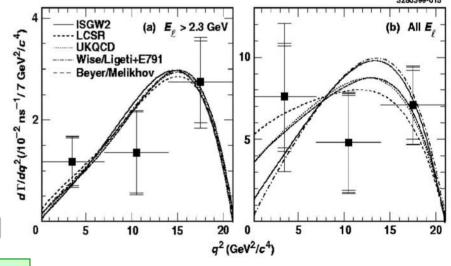
CLEO (incl.)

CLEO (excl.)



V_{ub} plan for future ($L > 10^{35}$)

• Inclusive $B \to X_u \ell \nu$

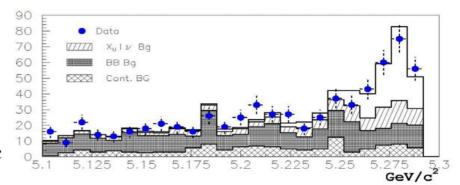

- Full reconstruction of the other B for improved S/N; eff. $\approx 0.2\%$
- $-E_{\ell}$ combined with E_{γ} from $b \to s\gamma$
- $M_{\rm had}$ (inv. mass of X_u): $M_{\rm had} < M_{D^0}$, acceptance $\sim 80\%$
- $-q^2$ (inv. mass-squared of $\ell\nu$): $q^2 > 2M_B M_{D^0} M_{D^0}^2$, acceptance $\sim 20\%$
- Exclusive $B \to X_u \ell \nu$ and lattice QCD
- Hadronic decays $B \to D_s^{(*)} X_u$

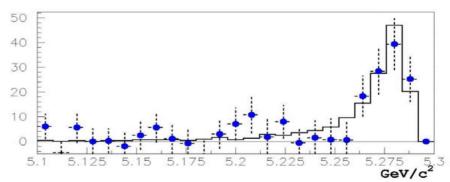
Exclusive $B \rightarrow X_{\mu} I \nu$ and lattice QCD

- In BCP4 conference, Jik Lee & Ian Shipsey stated that "lattice QCD is capable of predicting the absolute normalization of the form factor in $B \to \pi \ell \nu$ or $D \to \pi \ell \nu$ to \sim few%", hence making $\delta |V_{ub}|/|V_{ub}|$ (theory) $\sim (1-2)\%$
- Step 1: Calibrate lattice!
 - with $D \to \pi \ell \nu$
 - charm-factory ($D\bar{D}$ threshold $e^+e^$ collider) is crucial!
- Step 2: Measure $d\Gamma/dq^2$ in $B \to \pi \ell \nu$.
 - Use fully reconstructed B sample!
- Step 3: $\Gamma(B \to \pi \ell \nu)$ and lattice $\Longrightarrow |V_{nb}|$

CLEO $B \to \rho \ell \nu$ (2000)

Lee & Shipsey simulation (BCP4) $\delta V_{ub}/V_{ub} \sim O(1\%)$ with L=10 ab⁻¹




1/24/2002

Belle activities for V_{ub}

$$B^0 \to \pi^- \ell^+ \nu$$

- $\int \mathcal{L}dt = 21.3 \text{ fb}^{-1}$
- Event selection
 - single lepton of $1.2 < p_{\ell} < 2.8~{\rm GeV}/c$
 - $-|\cos\theta_{p_{\text{miss}}}| < 0.8$
 - $-\mid \sum Q \mid \leq 1$
 - $|M^2| < 2 \text{ GeV}^2$
 - $-p_{\ell} + p_{\pi} > 3.1 \text{ GeV/}c$
 - $-\left|\cos\theta_{B-\pi}\right|<1$
 - $|\Delta E| < 0.3 \text{ GeV}$

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.28 \pm 0.20 \pm 0.26) \times 10^{-4}$$

preliminary

V_{ub} from $B \to D_s^{(*)} X_u$ decays

- Instead of $\ell\nu$, we have $D_s^{(*)}$
- signal B is fully reconstructed; no need to worry about missing neutrino LHC-b and B-TeV may become competitors in $|V_{ub}|$!
- Currently, the largest uncertainty is in the D_s sub-decay branching fractions: $\delta \mathcal{B}/\mathcal{B} \approx (25 \sim 30)\%$
- Such uncertainties can be removed by taking the ratios, e.g.

$$\frac{\Gamma(B \to D_s^{(*)} \pi)}{\Gamma(B \to D_s^{(*)} D)}$$

(Kim, Kwon, Lee & Namgung, PRD (2001))

- Theory error from form factor uncertainty is O(10%): within the generalized factorization scheme; penguin effects are considered
- L-QCD may help eventually..

Conclusion

- Impressive progress for V_{ub} , V_{cb} over the last few years
- Many different analysis methods are applied
 - exclusive (HQET, L-QCD, ...)
 - inclusive (moments from $b \rightarrow s\gamma$)
- Future prospects
 - Full-reconstruction technique to improve S/N for V_{ub} seems promising for inclusive analyses
 - L-QCD may be crucial for exclusive analyses

