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Neutrino tomography

Neutrino Neutrino
absorption oscillation
tomography tomography

Principle  Neutrino absorption MSW effect
In matter

Baselines  Many One
Energies > TeV ~ 0.1 — 50 GeV
Sources Cosmic Superbeams,

Neutrino Factories

Interference experi-
ments

Analogy  X-ray tomography

De Rujula et al. Ermilova et al.
(1983) and others  (1988) and others

Principles

e Short or long baseline experimental setup

e Oscillation parameters assumed to be measured with high precision:
Ams,, Am3;, 013, 012, 023, dc'p

’ Matter density profile
j (in some model)
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From measurement:

Neutrino oscillations
in matter
Energy
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Fit routine (lattice, genetic algorithm, etc.)

Matter density profile
information

The evolution operator method

Propagation in a layer of length x; and constant density p; described
by evolution operator

U(zj, p;) = e )T,

where H(p;) is the Hamiltonian in constant matter density
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For an arbitrary matter den- & °
sity (step) profile
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Pog = |(vsl(wn, p) - U1, pr) )|

Note that in general [U(z;, p;),U(x;, pj)] # 0 for i # j
— Additional information by interference effects compared to neutrino
absorption tomography

Neutrino oscillation tomography

or

What could be learned about the Earth’s interior
from neutrino oscillations in matter?

Tommy Ohlsson and Walter Winter

Technische Universitat Miinchen

Phys. Lett. B512 (2001) 357 (hep-ph/0105293) and hep-ph/0111247

Genetic algorithms ...
... for searching the high-dimensional parameter space

i:} Individuum

Easy to build

Fitness function: Survival probability of an individuum in its environ-

[l

Sample fitness 0.5 0.9 0.3 0.8

Can be easily calculated for phenotype, but not for genotype
S — Build individuum from chromosome first, then calculate the survival
o _’: -iiifﬁf’f} /\> probability

The search for large cavities in the
Earth’s mantle

Experimental setup: Low energy superbeam 500 MeV, v, — ve
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L=1000 km

In this scenario:

e Cavity centered at dy with length [
e Maximum depth 20 km

e Average depth 13 km
o Average matter density: 2.9 g/cm?

e Matter density in the cavity: p = 1.0g/cm?

For a cavity centered at dy = 300 km:
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The genetic algorithm

Generate initial generation of
chromosomes by random

Reproductive plan for the next generation:

The cavity can be seen on the 3o-level for [p = 200km, lo-level for
lp = 100 km and not at all for [y = 50 km.

Reconstruction of the Earth’s matter
density profile

Create individuum from each chromosome and calculate its fitness value

Selection Select two parent chromosomes by random with a probability
Experimental setup: 20 GeV neutrino factory, baseline L = 11700 km, proportional to the fitness value

vy — Ve

Symmetric Earth matter density profile with 2/V layers assumed, which
means that the dimension of the parameter space is V.

Crossover Cross the two parent chromosomes at a random position
Mutation Mutate each position with a certain probability

LTI

Use genetic algorithm with many trial runs to find matter density profiles \ \
fitting the measured energy spectrum. I i

d[km]

Best Its of tic algorithm fits (N = 4,9, 14):
est results of genefic algorithm fits 9, 14) — Repeat until new generation is completely populated
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Application to the reconstruction problem
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Genotype Phenotype
All results are within the 1o level. Therefore a preciser measurement is -

not possible and small fluctuations in mantle and core are not resolvable.

Examples for matter density profiles close to the 1o (first row), 20 (se-

cond row), and 3¢ (third row) contours:
Fit to Z
: A . R Measurement;:

2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
L [km] L [km] L [km]

Genetic algorithms vs. lattice methods

p [gfem®

Genetic algorithms Lattice methods

Polynomial running time @(N*) Exponential running time O(e'")

Finds optima also in between lat- May miss minima in between lat-
tice points tice points

May miss regions in parameter Searches parameter space systema-
space if not enough trial runs tically




