

An Investigation of T-Violating Effects in Neutrino Oscillations in Matter

Tommy Ohlsson

Technische Universität München

WIN 2002, Christchurch, New Zealand

January 21-26, 2002

T-violating Effects

Interplay of fundamental and matter-induced T violation:

T transformation = time reversal transformation

Experimental problem: T-violation cannot be directly experimentally tested, since one cannot change the direction of time.

"Solution": Instead of studying neutrino oscillations "backward" in time, one can study them forward in time, but with initial and final flavors interchanged.

fundamental T violation (intrinsic) = due to non-vanishing $\{\delta_{CP}\}$ matter-induced T violation (extrinsic) = due to interchange of positions of source and detector (asymmetric matter density profile)

T violation in neutrino oscillations:

$$\Delta P_{\alpha\beta}^T \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\nu_{\beta} \to \nu_{\alpha}),$$

where $P(\nu_{\alpha}
ightarrow \nu_{\beta})$ is the transition probability for $\nu_{\alpha}
ightarrow \nu_{\beta}$.

CP and CPT differences:

$$\Delta P_{\alpha\beta}^{CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$\Delta P_{\alpha\beta}^{CPT} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha})$$

Two neutrino flavors:

There are no T-violating effects!

$$P_{e\mu} = P_{\mu e} \quad \Rightarrow \quad \Delta P_{e\mu}^T = 0$$

Three neutrino flavors:

• In vacuum:

CPT invariance \Rightarrow T violation \Leftrightarrow CP violation

• In matter:

Matter is both CP and CPT-asymmetric, since it consists of particles (electrons and nucleons) and not of their antiparticles or, in general, of unequal numbers of particles and antiparticles.

- Symmetric matter density profiles:

Example: Constant matter density profiles If $\delta_{CP}=0$, then $\Delta P_{\alpha\beta}^T=0$.

- Asymmetric matter density profiles:

Example: Step function matter density profiles

Examples:

Symmetric matter density profiles:

Asymmetric matter density profile:

The T-odd probability difference (arbitrary matter density profile): θ_{13} and δ/Δ are small parameters!

$$\Delta P_{e\mu}^{T} \simeq -2s_{23}c_{23}\Im\left[\beta^{*}(A-C^{*})\right]$$

$$\simeq -2s_{13}s_{23}c_{23}\left(\Delta-s_{12}^{2}\delta\right)$$

$$\times \Im\left[e^{-i\delta_{CP}}\beta^{*}\left(A_{a}-C_{a}^{*}\right)\right]$$

Here:

$$s_{ij} \equiv \sin heta_{ij}, \quad c_{ij} \equiv \cos heta_{ij}; *$$

$$\delta \equiv rac{\Delta m_{21}^2}{2E_
u}, \quad \Delta \equiv rac{\Delta m_{31}^2}{2E_
u};$$

$$A_a \equiv \alpha \int_{t_0}^t \alpha^* f \, dt' + \beta \int_{t_0}^t \beta^* f \, dt', \quad C_a \equiv f \int_{t_0}^t \alpha f^* \, dt'.$$

 $lpha=lpha(t,t_0)$ and $eta=eta(t,t_0)$ are to be determined from the solutions of the two flavor neutrino problem in the (1,2)-sector and $f=f(t,t_0)=\exp\left\{-i\int_{t_0}^t\left(\Delta-\frac{1}{2}\left[\delta+V(t')\right]\right)dt'\right\}$.

In addition:
$$\Delta P_{e\mu}^T = \Delta P_{\mu\tau}^T = \Delta P_{\tau e}^T$$

 $\Delta P_{e\mu}^T$ has been calculated for

- matter consisting of two layers of constant density and
- 2. an arbitrary matter density profile in the adiabatic approximation.

Tommy Ohlsson

$$^*\theta_{12} = \theta_3, \theta_{13} = \theta_2, \theta_{23} = \theta_1$$

In the low energy regime $(\delta = \Delta m_{21}^2/(2E_{\nu}) \gtrsim V_{1,2})$:

$$\Delta P_{lphaeta}^{T} \simeq \cos \delta_{CP} \cdot 8 \underbrace{s_{12}c_{12}s_{13}s_{23}c_{23}}_{Sin(2 heta_{1}-2 heta_{2})} \underbrace{\sin 2 heta_{12}}_{Sin 2 heta_{12}} \times \{s_{1}s_{2}\left[Y-\cos \left(\Delta_{1}L_{1}+\Delta_{2}L_{2}
ight)\right]\} + \sin \delta_{CP} \cdot 4s_{13}s_{23}c_{23} \times X_{1}\left[Y-\cos \left(\Delta_{1}L_{1}+\Delta_{2}L_{2}
ight)\right]$$

 $\cos \delta_{CP}$ term: matter-induced T violation

 $\sin \delta_{CP}$ term: fundamental T violation

$$\Delta P_{e\mu}^T = \Delta P_{e\mu}^T(L)$$
:

$$L_1 = L_2 = L/2$$
; $\rho_1 = 1 \text{ g/cm}^3$, $\rho_2 = 3 \text{ g/cm}^3$

solid curve - analytic result

dashed curve - numerical result

$$\Delta P_{e\mu}^T = \Delta P_{e\mu}^T(L)$$
:

grey curves - analytic results

black solid and dashed curves - result averaged over the fast oscillations of the analytic and numerical calculation, respectively

 \Rightarrow Oscillations governed by the large $\Delta m^2_{\rm atm} = \Delta m^2_{31}$ are very fast!

Left plot: Same parameter values as in Fig. 3a of P.M. Fishbane and P. Kaus, PLB **506**, 275 (2001), hep-ph/0012088.

Right plot: Larger values of θ_{13} and Δm_{21}^2 .

E. Akhmedov, P. Huber, M. Lindner, and T. Ohlsson, NPB **608**, 394 (2001), hep-ph/0105029.

Summary & Conclusions

✓ Complex interplay between fundamental T violation and matter-induced T violation!

In vacuum: T violation correlated to CP violation

$$\Delta P_{\alpha\beta}^{CP} + \Delta P_{\bar{\alpha}\bar{\beta}}^{T} = \Delta P_{\alpha\beta}^{CPT} \equiv 0 \quad \Rightarrow \quad \Delta P_{\alpha\beta}^{T} = -\Delta P_{\bar{\alpha}\bar{\beta}}^{CP}$$

- ✓ Approximative analytical formulas for T-odd probability differences $\Delta P_{\alpha\beta}^T$ have been derived! Arbitrary matter density profile
- ✓ T-violating effects can be considered as a measure of genuine three-flavorness!
- ✓ For terrestrial experiments matter-induced T-violating effects can safely be ignored!
- ✓ Asymmetric matter effects cannot hinder the determination of the fundamental CP and T-violating phase δ_{CP} in LBL exp.!

Reference

E. Akhmedov, P. Huber, M. Lindner, and T. Ohlsson, Nucl. Phys. B 608, 394 (2001), hep-ph/0105029.