Direct CP asymmetry of $b \to s\gamma$ and $b \to d\gamma$ in models beyond the Standard Model

A.G. Akeroyd (akeroyd@kias.re.kr) and S. Recksiegel (stefan@post.kek.jp)

We study the direct CP asymmetry of the decays $b \to s\gamma$ and $b \to d\gamma$ in the context of two models: i) a supersymmetric (SUSY) model with unconstrained SUSY phases, and ii) a model with a single generation of vector quarks. Current measurements of the direct CP asymmetry of $b \to s\gamma$ are sensitive to the contribution from $b \to d\gamma$. In both the above models we show that $b \to d\gamma$ can sizeably influence the combined asymmetry, and in case ii) may in fact be the dominant contribution.

A.G. Akeroyd, Y.Y. Keum, S. Recksiegel, Phys. Lett. B 507, 252 (2001); A.G. Akeroyd, S. Recksiegel, Phys. Lett. B 525, 81 (2002)

Motivation for considering $B \to X_d \gamma$

- (i) It provides a theoretically clean way of measuring V_{td} , as proposed in
- (ii) \mathcal{A}_{CP} in the SM is sizeable, and much larger than that for $b \to s\gamma$
- (iii) The current measurement of \mathcal{A}_{CP} for $b \to s\gamma$ by the CLEO Collaboration is sensitive to events from $b \to d\gamma$. Therefore knowledge of \mathcal{A}_{CP} for $b \to d\gamma$ is essential, in order to compare experimental data with the theoretical prediction in a given model.
- (iv) \mathcal{A}_{CP} for the combined signal of $B \to X_s \gamma$ and $B \to X_d \gamma$ is expected to be close to zero in the SM Both of these conditions can be relaxed in models beyond the SM.

$b \to d\gamma$ and $b \to s\gamma$

$$R = \frac{BR(B \to X_d \gamma)}{BR(B \to X_s \gamma)} = 0.017 < R < 0.074 \quad \Rightarrow \quad BR(B \to X_d \gamma) \approx 10^{-5} \to 10^{-6} \tag{1}$$

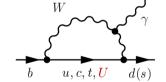
At B-factories: expect $10^2 \to 10^3 \ b \to d\gamma$ transitions.

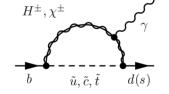
$$\mathcal{A}_{CP}^{d\gamma(s\gamma)} = \frac{\Gamma(\overline{B} \to X_{d(s)}\gamma) - \Gamma(B \to X_{\overline{d(s)}}\gamma)}{\Gamma(\overline{B} \to X_{d(s)}\gamma) + \Gamma(B \to X_{\overline{d(s)}}\gamma)} = \frac{\Delta\Gamma_{d(s)}}{\Gamma_{d(s)}^{tot}}$$
(2)

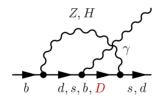
Expected SM range: $-5\% \le A_{CP}^{d\gamma} \le -28\%$

Isolating $B \to X_d \gamma$ is challenging since $B \to X_s \gamma$ constitutes serious background. If $\mathcal{A}_{CP}^{d\gamma}$ and $\mathcal{A}_{CP}^{s\gamma}$ cannot be separated, then only their sum can be measured. In SM (with $m_s = m_d = 0$) unitarity of the CKM matrix ensures that the sum is zero. In the presence of new physics this cancellation does not occur.

CLEO measures weighted sum of CP asymmetries:


$$\mathcal{A}_{CP}^{exp} = 0.965 \mathcal{A}_{CP}^{s\gamma} + 0.02 \mathcal{A}_{CP}^{d\gamma} = -27\% < \mathcal{A}_{CP}^{exp} < 10\% (90\% c.l.).$$
 (3)


If the detection efficiencies for both decays were identical, this would coincide with


$$\mathcal{A}_{CP}^{s\gamma+d\gamma} = \frac{BR^{s\gamma}\mathcal{A}_{CP}^{s\gamma} + BR^{d\gamma}\mathcal{A}_{CP}^{d\gamma}}{BR^{s\gamma} + BR^{d\gamma}}.$$
 (4)

 \longrightarrow need to consider $B \to X_d \gamma$ contribution to \mathcal{A}_{CP}^{exp} !

Feynman diagrams for $B \to X_{d,s} \gamma$

Direct CP Asymmetry in $B \to X_{d,s} \gamma$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{td}^* V_{tb} \sum_{i=1}^8 C_i(\mu_b) Q_i(\mu_b), \qquad Q_7 = \frac{e}{16\pi^2} m_b \bar{d}_L \sigma^{\mu\nu} b_R F_{\mu\nu}, \qquad (5)$$

$$\mathcal{A}_{CP}^{d(s)\gamma} = \frac{10^{-2}}{|C_7|^2} \Big(1.17 \times \text{Im}[C_2 C_7^*] - 9.51 \times \text{Im}[C_8 C_7^*] + 0.12 \times \text{Im}[C_2 C_8^*] \Big)$$

$$-9.40 \times \operatorname{Im}\left[\epsilon_{d(s)} C_2 (C_7^* - 0.013 C_8^*)\right]$$

$$\epsilon_x = V_{ux}^* V_{ub} / V_{tx}^* V_{tb} \tag{7}$$

In the SM $Im(C_x) = 0$, only last term contributes \longrightarrow cancellation (CKM-unitarity)

Numerics

Effective SUSY Model parameters are varied in the range

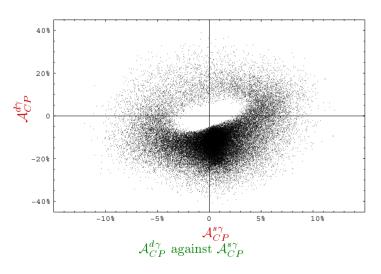
	M	M'	an eta	$m_{H^{\pm}}$	M_Q	M_U	μ	ϕ_{μ}	A_t	ϕ_A	ρ	η
min	0	0	1	200	0	0	0	0	0	0	-0.1	0.2
max	400	400	30	500	200	200	200	2π	300	2π	0.4	0.5

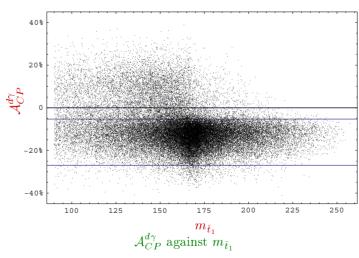
EDM constraints automatically fulfilled, direct search lower limits on the masses of \tilde{t}_1 and χ^{\pm} fulfilled by discarding points that do not pass cuts $m_{\tilde{t}_1} > 90$ GeV and $m_{\chi_1^{\pm}} > 80$ GeV, furthermore $0.2 \le |C_7(m_b)| \le 0.38$.

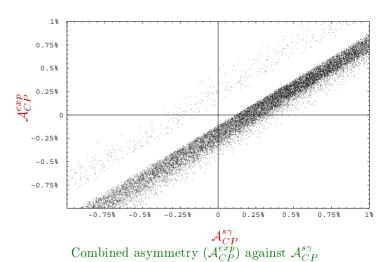
Vectorquark Model parameters are varied in the range

	ρ	η	$m_{U/D}$	M_H	$ V_{Us}^*V_{Ub} $	$ V_{Ud}^*V_{Ub} $	z_{sb}	$ z_{db} $	$\operatorname{Arg}z_{sb},z_{db}$
min	-0.1	0.2	250	100	0	0	0	0	0
max	0.4	0.5	1000	200	0.004	0.008	$8.1 \cdot 10^{-4}$	0.001	2π

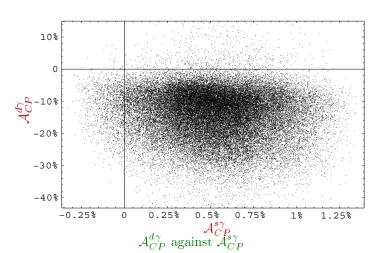
Conclusions

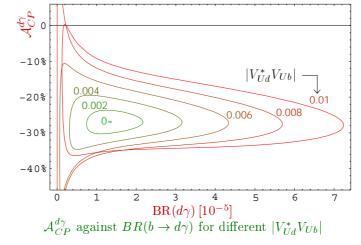

Standard Model: $-28\% \le A_{CP}^{d\gamma} \le -5\%$, $0 < A_{CP}^{s\gamma} < 1\%$, combined $|A_{CP}^{s\gamma+d\gamma}| < 0.3\%$.

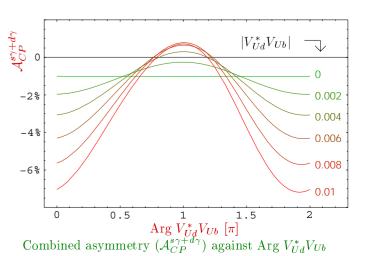

Effective SUSY Model: $-40\% \le A_{CP}^{d\gamma} \le 40\%$, $(-10\% \le A_{CP}^{s\gamma} \le 10\%)$, this has a measurable (at high luminosity B factories) impact on the combined asymmetry. Both constructive and destructive interference possible. R unchanged with respect to SM.


Vector quark Model: $-40\% \le \mathcal{A}_{CP}^{d\gamma} \le 40\%$ but $-0.25\% \le \mathcal{A}_{CP}^{s\gamma} \le 1.25\%$ almost unchanged. Large effects in combined asymmetry caused by increased 0.01 < R < 0.3. Combined asymmetry can be dominated by $b \to d\gamma$.

Non-vanishing combined asymmetry $\mathcal{A}_{CP}^{s\gamma+d\gamma}$ is a clear signal of physics beyond the SM. Interpretation crucially depends on excellent K/π -separation.


Effective SUSY Model Plots





Vector Quark Model Plots

