Flavour-Symmetry Strategies to Extract γ

Robert Fleischer

DESY Hamburg, Theory Group

WIN '02, Christchurch, New Zealand, 21-26 January 2002

- Setting the Stage
- Isospin + SU(3) + Dynamics: γ from $B \rightarrow \pi K, \pi \pi$
- U-Spin Strategies:
 - Focus on the following systems:
 - * $B_d \to \pi^+ \pi^-, B_s \to K^+ K^-$ * $B_{(s)} \to \pi K.$
- <u>Conclusions</u>

Setting the Stage

Preliminaries

• Particularly interesting element for tests of KM picture:

Direct determination of γ

- \rightarrow Comparison between different approaches.
- $\rightarrow\,$ Comparison with UT fits, yielding $\gamma\,\sim\,60^\circ.$

Key Problem in Determination of γ

• Wolfenstein (LO): \Rightarrow CKM elements real, apart from

$$V_{td} = |V_{td}|e^{-i\beta}$$
 and $V_{ub} = |V_{ub}|e^{-i\gamma}$.

• Sensitivity to γ due to interference effects between different CKM amplitudes in non-leptonic B decays:

CKM unitarity
$$\Rightarrow \begin{cases} A(\overline{B} \to \overline{f}) = |A_1|e^{i\delta_1} + e^{-i\gamma}|A_2|e^{i\delta_2}\\ A(B \to f) = |A_1|e^{i\delta_1} + e^{+i\gamma}|A_2|e^{i\delta_2}, \end{cases}$$

where γ enters through V_{ub} and $|A_{1,2}|e^{i\delta_{1,2}}$ CP-conserving "strong" amplitudes (\rightarrow hadron dynamics!?):

 \Rightarrow "direct" CP asymmetry:

$$\mathcal{A}_{CP} = \frac{|A(B \to f)|^2 - |A(\overline{B} \to \overline{f})|^2}{|A(B \to f)|^2 + |A(\overline{B} \to \overline{f})|^2}$$
$$= \frac{2|A_1||A_2|\sin(\delta_1 - \delta_2)\sin\gamma}{|A_1|^2 + 2|A_1||A_2|\cos(\delta_1 - \delta_2)\cos\gamma + |A_2|^2}.$$

- <u>Goal</u>: extraction of γ from \mathcal{A}_{CP} !
- <u>Problem</u>: hadronic uncertainties due to $|A_{1,2}|e^{i\delta_{1,2}}$:

$$|A|e^{i\delta} \sim \sum_{k} \underbrace{C_{k}(\mu)}_{\text{pert. QCD}} \times \underbrace{\langle \overline{f}|Q_{k}(\mu)|\overline{B} \rangle}_{\text{``unknown''}}.$$

Major Approaches to Extract γ

- Try to calculate $\langle \overline{f} | Q_k(\mu) | \overline{B} \rangle$: interesting progress \rightarrow
 - "QCD factorization" [Beneke et al.]
 - "PQCD" [Li et al.].

 \Rightarrow

Use decays of neutral B_d - or B_s -mesons:

Interference effects due to $B_q^0 - \overline{B_q^0}$ mixing!

- Fortunate cases, where hadronic matrix elements cancel:
- [Aleksan, Dunietz & Kayser ...]
- Amplitude relations to eliminate the hadronic uncertainties:
 - Exact relations: [Gronau & Wyler; Dunietz; R.F. & Wyler ...]

"Tree" decays $B \to KD$ or $B_c \to D_s D$.

- Flavour symmetries, i.e. isospin, SU(3) or U-spin:

 $B_{(s)} \rightarrow \pi \pi, \pi K, KK \rightarrow |$ Focus of this talk!

 $B \to \pi K, \pi \pi$

Isospin + SU(3) + Dynamics:

 $\gamma \text{ from } B \to \pi K, \pi \pi$

Basic Features of $B \to \pi K$ Decays

• $B \rightarrow \pi K$ decays are governed by QCD penguins:

- $|V_{us}V_{ub}^*/(V_{ts}V_{tb}^*)| \approx 0.02 \implies \text{penguins dominate!}$
- Rôle of EW penguins (large top-quark mass!):
 - $B^0_d \rightarrow \pi^- K^+$, $B^+ \rightarrow \pi^+ K^0$:

contribute in colour-suppressed form and are expected to play a minor rôle: "factorization" $\rightarrow O(1\%)$.

- $B^+ \rightarrow \pi^0 K^+$, $B^0_d \rightarrow \pi^0 K^0$:

contribute also in colour-allowed form and may compete with tree-diagram-like topologies $\rightarrow O(20\%)!$

• SU(2) isospin relations:

$$\begin{split} \sqrt{2}A(B^+ \to \pi^0 K^+) + A(B^+ \to \pi^+ K^0) \\ &= \sqrt{2}A(B^0_d \to \pi^0 K^0) + A(B^0_d \to \pi^- K^+) \\ &= -\Big[\underbrace{|T+C|e^{i\delta T+C}e^{i\gamma}}_{\text{Trees}} + \underbrace{(P_{\text{ew}} + P_{\text{ew}}^{\text{C}})}_{\text{EW Penguins}}\Big] \propto \Big[e^{i\gamma} + q_{\text{ew}}\Big] \,. \end{split}$$

- Amplitude relation with analogous phase structure also for the "mixed" $B^+ \to \pi^+ K^0$, $B^0_d \to \pi^- K^+$ system.
- Combinations of $B \to \pi K$ decays to probe γ :

-
$$B^{\pm} \rightarrow \pi^{\pm} K$$
, $B_d \rightarrow \pi^{\mp} K^{\pm}$ ("mixed")
[R.F. ('95); R.F. & Mannel ('97); Gronau & Rosner ('98)]

-
$$B^{\pm} \rightarrow \pi^{\pm} K, B^{\pm} \rightarrow \pi^{0} K^{\pm}$$
 ("charged")
[Gronau, Rosner, London ('94); Neubert, Rosner; Buras, R.F. ('98)]

-
$$B_d \rightarrow \pi^0 K, B_d \rightarrow \pi^{\mp} K^{\pm}$$
 ("neutral")
[Buras & R.F. ('98–'00)]

• Interestingly, already <u>CP-averaged branching ratios</u> may lead to highly non-trivial constraints on γ .

[R.F. & Mannel ('97); Neubert & Rosner ('98)]

Extracting γ from $B \rightarrow \pi K$ Decays

• Key observables:

$$\left\{ \begin{array}{c} R\\ A_0 \end{array} \right\} \equiv \left[\frac{\mathrm{BR}(B^0_d \to \pi^- K^+) \pm \mathrm{BR}(\overline{B^0_d} \to \pi^+ K^-)}{\mathrm{BR}(B^+ \to \pi^+ K^0) + \mathrm{BR}(B^- \to \pi^- \overline{K^0})} \right] \frac{\tau_{B^+}}{\tau_{B^0_d}}$$

$$\left\{ \begin{array}{c} R_{\rm c} \\ A_0^{\rm c} \end{array} \right\} \equiv 2 \left[\frac{\mathsf{BR}(B^+ \to \pi^0 K^+) \pm \mathsf{BR}(B^- \to \pi^0 K^-)}{\mathsf{BR}(B^+ \to \pi^+ K^0) + \mathsf{BR}(B^- \to \pi^- \overline{K^0})} \right]$$

$$\left\{ \begin{array}{c} R_{\mathrm{n}} \\ A_{0}^{\mathrm{n}} \end{array} \right\} \equiv \frac{1}{2} \left[\frac{\mathrm{BR}(B_{d}^{0} \to \pi^{-}K^{+}) \pm \mathrm{BR}(\overline{B_{d}^{0}} \to \pi^{+}K^{-})}{\mathrm{BR}(B_{d}^{0} \to \pi^{0}K^{0}) + \mathrm{BR}(\overline{B_{d}^{0}} \to \pi^{0}\overline{K^{0}})} \right]$$

• Employing the SU(2) flavour symmetry and dynamical assumptions, concerning mainly the smallness of FSI:

$$R_{\rm (c,n)}, \ A_0^{\rm (c,n)} = {\rm functions} \left(q_{\rm (c,n)}, r_{\rm (c,n)}, \delta_{\rm (c,n)}, \gamma \right) \,. \label{eq:constraint}$$

- Here the following variables are involved:
 - $q_{(c,n)}$: ratio of EW penguins to "trees".
 - $r_{(c,n)}$: ratio of "trees" to QCD penguins.
 - $\delta_{(c,n)}:$ strong phase between "trees" and QCD penguins.

[Buras & R.F. ('98); alternative parametrization: Neubert ('98)]

- The $q_{(\mathrm{c},\mathrm{n})}$ can be fixed through theoretical arguments:
 - $\underline{B^{\pm} \to \pi^{\pm} K, B_d \to \pi^{\mp} K^{\pm}}_{\text{contribute only in colour-suppressed form.}} q \approx 0$, as EW penguins [R.F. ('95); R.F. & Mannel ('97); Gronau & Rosner ('98)]
 - $\underline{B^{\pm}} \rightarrow \pi^{\pm}K, \ \underline{B^{\pm}} \rightarrow \pi^{0}K^{\pm}$: q_{c} can be fixed through the SU(3) flavour symmetry (no dynamics !). [Neubert & Rosner (1998)]
 - $\underline{B_d \to \pi^0 K, B_d \to \pi^{\mp} K^{\pm}}$: q_n can also be fixed through the SU(3) flavour symmetry (no dynamics !). [Buras & R.F. (1998)]
- The $r_{(\mathrm{c},\mathrm{n})}$ can be fixed as follows:
 - $B^{\pm} \rightarrow \pi^{\pm} K$, $B_d \rightarrow \pi^{\mp} K^{\pm}$: r can be fixed using "factorization" or $B_s \rightarrow \pi K$ modes. [R.F. ('95); Gronau & Rosner ('98,'00); Beneke et al. ('01)]
 - $\frac{B^{\pm} \to \pi^{\pm} K, B^{\pm} \to \pi^{0} K^{\pm}}{B^{+} \to \pi^{+} \pi^{0}}$ branching ratio by using the SU(3) flavour symmetry (no dynamics !). [Gronau, Rosner & London (1994)]
 - $\frac{B_d \to \pi^0 K, B_d \to \pi^{\mp} K^{\pm}}{\text{through } SU(3) \text{ from } B^+ \to \pi^+ \pi^0 \text{ (no dynamics !).}}$ [Buras & R.F. (1998)]
- Uncertainties can be reduced through "QCD factorization".
 [Beneke, Buchalla, Neubert & Sachrajda (2001)]

Comments on Rescattering Effects

- Whereas the determination of q and r as sketched above may be affected by rescattering effects, this is <u>not</u> the case for the q_{c,n} and r_{c,n}, since here SU(3) suffices.
- Nevertheless, we have to assume that $B^+ \to \pi^+ K^0$ or $B_d \to \pi^0 K$ do <u>not</u> involve a CP-violating weak phase:

$$A(B^+ \to \pi^+ K^0) = - |\tilde{P}| e^{i\delta} \tilde{P} = A(B^- \to \pi^- \overline{K^0}).$$

• This relation may be affected by rescattering processes:

$$A(B^+ \to \pi^+ K^0) = - |\tilde{P}| e^{i\delta} \tilde{P} \Big[1 + \underbrace{\rho_c e^{i\theta_c}}_{\propto \lambda^2 R_b} e^{i\gamma} \Big].$$

- Can be taken into account through additional input, i.e. SU(3) and data on $B^{\pm} \to K^{\pm}K$. In the case of the neutral strategy, rescattering processes can be included in an <u>exact manner</u> with the help of $\mathcal{A}_{CP}^{mix}(B_d \to \pi^0 K_S)$.
- "QCD factorization" is in favour of small effects!

Back to the Determination of γ ...

• Observables:
$$R_{(c,n)}\left(q_{(c,n)}, r_{(c,n)}, \delta_{(c,n)}, \gamma\right)$$

 $A_0^{(c,n)}\left(q_{(c,n)}, r_{(c,n)}, \delta_{(c,n)}, \gamma\right)$ \Rightarrow

$$\delta_{(\mathbf{c},\mathbf{n})} = \delta_{(\mathbf{c},\mathbf{n})} \left(q_{(\mathbf{c},\mathbf{n})}, r_{(\mathbf{c},\mathbf{n})} \right), \quad \boldsymbol{\gamma} = \boldsymbol{\gamma} \left(q_{(\mathbf{c},\mathbf{n})}, r_{(\mathbf{c},\mathbf{n})} \right).$$

- Interesting constraints on γ already from $R_{
 m (c,n)}$:
 - $\delta_{(c,n)}$ suffers from large hadronic uncertainties!
 - However, we can get rid of $\delta_{(c,n)}$ by keeping it as a "free" variable, yielding minimal and maximal values for $R_{(c,n)}$:

$$R_{(\mathrm{c},\mathrm{n})}^{\,\mathrm{ext}}\Big|_{\delta_{(\mathrm{c},\mathrm{n})}} = \mathsf{function}\,\left(q_{(\mathrm{c},\mathrm{n})},r_{(\mathrm{c},\mathrm{n})},\pmb{\gamma}
ight).$$

- Keeping, in addition, $r_{(c,n)}$ as a "free" variable, we obtain another – less restrictive – minimal value for $R_{(c,n)}$:

$$R_{(\mathrm{c},\mathrm{n})}^{\min}\Big|_{\delta_{(\mathrm{c},\mathrm{n})},r_{(\mathrm{c},\mathrm{n})}} =$$
function $\left(q_{(\mathrm{c},\mathrm{n})}, \boldsymbol{\gamma}\right) \sin^2 \boldsymbol{\gamma}$

– These extremal values of $R_{\rm (c,n)}$ imply constraints on γ , as the following cases are excluded:

$$R_{(\mathrm{c},\mathrm{n})}^{\mathrm{exp}} < R_{(\mathrm{c},\mathrm{n})}^{\mathrm{min}}, \quad R_{(\mathrm{c},\mathrm{n})}^{\mathrm{exp}} > R_{(\mathrm{c},\mathrm{n})}^{\mathrm{max}}.$$

• Dependence of extremal values of $R_{\rm c}$ on γ ($q_{ m c}=0.68$):

• Dependence of extremal values of $R_{\rm n}$ on γ $(q_{\rm n} = 0.68)$:

Observable	CLEO ('00)	BaBar ('01)	Belle ('01)
R	1.00 ± 0.30	0.97 ± 0.23	1.50 ± 0.66
$R_{ m c}$	1.27 ± 0.47	1.19 ± 0.35	2.38 ± 1.12
$R_{ m n}$	0.59 ± 0.27	1.02 ± 0.40	0.60 ± 0.29

May Arrive at Puzzling Situation!

• Constraints in the $\overline{\varrho}$ – $\overline{\eta}$ plane: note that $q_{
m c,n} \propto 1/R_b!$

– Example: $R_{\rm n} = 0.6$, $r_{\rm n} = 0.17 \Rightarrow$

– Impact of lower bound on ΔM_s : $\Rightarrow \gamma < 90^{\circ}!$

• In addition to $\gamma > 90^{\circ}$, as indicated by $R_{\rm c}$ and $R_{\rm n}$, CLEO & Belle may point towards another "puzzle":

 $\cos \delta_{
m c} > 0$ and $\cos \delta_{
m n} < 0!$ [B

[Buras & R.F. (2000)]

Towards Calculations of $B ightarrow \pi K, \pi \pi$

- Interesting theoretical progress:
 - "QCD factorization" [Beneke *et al.*]
 - "PQCD" [Li et al.].
- "QCD factorization" formula of the following structure:

 $A(\overline{B} \to M_1 M_2) = \langle M_2 | j_2 | 0 \rangle \langle M_1 | j_1 | \overline{B} \rangle \left[1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\Lambda/m_b) \right]$

- $\mathcal{O}(\alpha_s)$ can be calculated in a systematic way.
- $\mathcal{O}(\Lambda/m_b)$ represent major limitation!

[Beneke, Buchalla, Neubert & Sachrajda (1999-2001)]

- Detailed recent analysis: [Beneke et al., hep-ph/0104110]
 - QCD factorization allows a reduction of the theoretical uncertainties of $r_{\rm c,n}$ and $q_{\rm c,n}$ to the level of

$$\mathcal{O}\left(\frac{1}{N_{\rm C}} \times \frac{m_s - m_d}{\Lambda} \times \frac{\Lambda}{m_b}\right) = \mathcal{O}\left(\frac{1}{N_{\rm C}} \times \frac{m_s - m_d}{m_b}\right) \,.$$

- Complementary approaches to probe γ , making more extensive use of QCD factorization:
 - * Rôle of Λ/m_b corrections: \rightarrow hot topic:

"Charming" penguins ... [Ciuchini et al., hep-ph/0104126]

U-Spin Strategies

\dots employ *U*-spin-related *B* decays:

$$d \leftrightarrow s$$

[<u>"Prehistory"</u>: Dunietz, *Snowmass '93 proceedings*; Lipkin (1997); Buras, R.F. & Mannel (1997); Falk, Kagan, Nir and Petrov (1997); ...]

- $B_{s(d)} \rightarrow \psi K_{\mathrm{S}}, B_{d(s)} \rightarrow D_{d(s)}^+ D_{d(s)}^-$ or $K^0 \overline{K^0}$: $\Rightarrow \gamma$ [R.F. (1999)]
- $\underline{B_d \to \pi^+ \pi^-}$ and $\underline{B_s \to K^+ K^-}$: $\Rightarrow \beta$ and γ [R.F. (1999–2000)]
- Strategies employing angular distributions: $\Rightarrow \beta, \gamma, \delta\gamma$ [R.F. (1999)]
- $\underline{B_d \to \pi^{\mp} K^{\pm}}$ and $\underline{B_s \to \pi^{\pm} K^{\mp} + B^{\pm} \to \pi^{\pm} K^{\vdots}} \Rightarrow \gamma$ [Gronau & Rosner (2000); Chiang & Wolfenstein (2000)]
- $\frac{B_{s(d)} \rightarrow J/\psi \eta}{[\text{Skands (2000)}]} \Rightarrow \gamma$

Extracting β and γ from

 $B_d \to \pi^+ \pi^-$

and

 $B_s \to K^+ K^-$

[R.F., PLB 459 (1999) 306; EPJC 16 (2000) 87]

The $B_d o \pi^+\pi^-$, $B_s o K^+K^-$ System

• Structure of decay amplitudes:

$$A(B_d^0 \to \pi^+ \pi^-) = \lambda_u^d \left(A_{\text{tree}}^u + A_{\text{pen}}^u \right) + \lambda_c^d A_{\text{pen}}^c + \lambda_t^d A_{\text{pen}}^t$$
$$A(B_s^0 \to K^+ K^-) = \lambda_u^s \left(A_{\text{tree}}^{u'} + A_{\text{pen}}^{u'} \right) + \lambda_c^s A_{\text{pen}}^{c'} + \lambda_t^s A_{\text{pen}}^{t'}.$$

• Unitarity of CKM matrix: $\lambda_t^q = -\lambda_u^q - \lambda_c^q \Rightarrow$

$$A(B_d^0 \to \pi^+ \pi^-) = \mathcal{C}\left[e^{i\gamma} - de^{i\theta}\right]$$
$$A(B_s^0 \to K^+ K^-) = \lambda \mathcal{C}'\left[e^{i\gamma} + \left(\frac{1-\lambda^2}{\lambda^2}\right)d'e^{i\theta'}\right]$$

$$de^{i\theta} = \left. \frac{\text{``Pen''}}{\text{``Tree''}} \right|_{B_d \to \pi^+ \pi^-}, \ d'e^{i\theta'} = \left. \frac{\text{``Pen''}}{\text{``Tree'''}} \right|_{B_s \to K^+ K^-}.$$

[d, d': real "hadronic" numbers; θ , θ' : CP-conserving strong phases]

• CP asymmetries:

$$a_{\rm CP}(B_q(t) \to f) = \left[\frac{\mathcal{A}_{\rm CP}^{\rm dir}\cos(\Delta M_q t) + \mathcal{A}_{\rm CP}^{\rm mix}\sin(\Delta M_q t)}{\cosh(\Delta\Gamma_q t/2) - \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma_q t/2)}\right]$$

• CP-violating observables:

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) = {\rm function}(d, \theta, \gamma)$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+ \pi^-) = {\rm function}(d, \theta, \gamma, \phi_d = 2\beta)$$

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-) = \operatorname{function}(d', \theta', \gamma)$$

$$\mathcal{A}_{\rm CP}^{\rm mix}(B_s \to K^+ K^-) = \operatorname{function}(d', \theta', \gamma, \underbrace{\phi_s \approx 0}_{B_s \to \psi \phi}).$$

• $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ are related to each other by interchanging all down and strange quarks:

$$U$$
-spin symmetry $\Rightarrow d = d', \theta = \theta'.$

 \Rightarrow 4 observables, depending on 4 unknowns:

$$d$$
, $heta$, $\phi_d=2eta$, γ ,

- i.e. these quantities can be determined!
- No dynamical assumptions required, only U spin!

Minimal Use of the U-Spin Symmetry

- The use of the <u>U</u>-spin-symmetry arguments can be minimized, if we employ also $\phi_d = 2\beta$ as an input:
 - $\mathcal{A}_{CP}^{dir}(B_d \to \pi^+\pi^-)$ and $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ allow us then to eliminate the strong phase θ :

$$\Rightarrow \quad d = d(\gamma)$$

- $\mathcal{A}_{CP}^{dir}(B_s \to K^+K^-)$ and $\mathcal{A}_{CP}^{mix}(B_s \to K^+K^-)$ allow us to eliminate the strong phase θ' in an analogous way:

$$\Rightarrow \quad d' = d'(\gamma)$$

- The corresponding contours in the $\gamma-d$ and $\gamma-d'$ planes can be determined in a theoretically clean way!
- γ and d, θ , θ' can now be extracted with the help of

$$d' = d$$

• Example:

- Input parameters:
 - * negligible $B^0_s extsf{--} \overline{B^0_s}$ mixing phase, i.e. $\phi_s = 0$
 - * $2\beta=44^\circ$, $\gamma=60^\circ$, d=d'=0.3, $\theta=\theta'=210^\circ$
- Output for the observables:
 - * $B_d \to \pi^+ \pi^-$: $\mathcal{A}_{CP}^{dir} = +19\%$, $\mathcal{A}_{CP}^{mix} = +62\%$ * $B_s \to K^+ K^-$: $\mathcal{A}_{CP}^{dir} = -17\%$, $\mathcal{A}_{CP}^{mix} = -27\%$.

– Contours in the γ -d and γ -d' planes:

• Experimental accuracy of $\mathcal{O}(10^\circ)$ and $\mathcal{O}(1^\circ)$ for γ at Tevatron-II and BTeV/LHC, respectively

⇒ very promising!

U-spin-breaking Effects

• Interestingly, $d'e^{i\theta'} = de^{i\theta}$ does <u>not</u> depend on decay constants and form factors, and is <u>not</u> affected by *U*-spin-breaking corrections within the "BSS mechanism":

Strengthens confidence into $d'e^{i\theta'} = de^{i\theta}!$

- Moreover, experimental insights:
 - In addition to γ , d=d', also θ , θ' can be determined:

First consistency check is provided by $\theta' \stackrel{?}{=} \theta$.

– Moreover, "normalization" factors |C| and |C'| can be determined from the CP-averaged branching ratios:

$$\left|\frac{\mathcal{C}'}{\mathcal{C}}\right|_{\text{fact}} = \underbrace{\left[\frac{f_K}{f_\pi}\right]}_{\text{decay constants}} \times \underbrace{\left[\frac{F_{B_sK}(M_K^2; 0^+)}{F_{B_d\pi}(M_\pi^2; 0^+)}\right]}_{\text{form factors}}.$$

- Another interesting implication of $d'e^{i\theta'} = de^{i\theta}$:

$$\left[\frac{\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-)}{\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-)}\right] = -\left|\frac{\mathcal{C}'}{\mathcal{C}}\right|^2 \left[\frac{{\rm BR}(B_d \to \pi^+ \pi^-)}{{\rm BR}(B_s \to K^+ K^-)}\right] \frac{\tau_{B_s}}{\tau_{B_d}}$$

- Similar relations between other U-spin-related B decays and further experimental tests ...

[R.F. (1999); Gronau (2000)]

Some Interesting Constraints

Useful quantity:

$$\mathcal{K} \equiv \frac{1}{\epsilon} \left| \frac{\mathcal{C}'}{\mathcal{C}} \right|^2 \left[\frac{\mathsf{BR}(B_d \to \pi^+ \pi^-)}{\mathsf{BR}(B_s \to K^+ K^-)} \right] \frac{\tau_{B_s}}{\tau_{B_d}}$$

- Parametrizations given above, and
$$d'e^{i\theta'} = de^{i\theta}$$
:

$$\Rightarrow \mathcal{K} = \frac{1 - 2d\cos\theta\cos\gamma + d^2}{\epsilon^2 + 2\epsilon d\cos\theta\cos\gamma + d^2}, \quad \text{with} \quad \epsilon \equiv \frac{\lambda^2}{1 - \lambda^2}.$$

- Allows us to determine $C \equiv \cos \theta \cos \gamma$ as function of d:

$$-1 \leq C \leq +1 \Rightarrow$$
 constraints on d and $\mathcal{A}_{CP}^{dir}!$

•
$$B_s \to K^+ K^-$$
 not accessible at $\Upsilon(4S) \Rightarrow B_d \to \pi^{\mp} K^{\pm}$:

– SU(3) flavour symmetry & dynamical assumptions: \Rightarrow

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-) \approx \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm})$$
$$\mathsf{BR}(B_s \to K^+ K^-) \approx \mathsf{BR}(B_d \to \pi^{\mp} K^{\pm}) \frac{\tau_{B_s}}{\tau_{B_d}}.$$

– Determination of \mathcal{K} [data reported in spring 2001]:

$$\mathcal{K} \approx \frac{1}{\epsilon} \left(\frac{f_K}{f_\pi}\right)^2 \begin{bmatrix} \frac{\mathsf{BR}(B_d \to \pi^+ \pi^-)}{\mathsf{BR}(B_d \to \pi^\mp K^\pm)} \end{bmatrix} = \begin{cases} 7.3 \pm 2.9 & (\mathsf{CLEO}) \\ 7.2 \pm 2.3 & (\mathsf{BaBar}) \\ 8.5 \pm 3.7 & (\mathsf{Belle}). \end{cases}$$

[Details: R.F., Eur. Phys. J. C16 (2000) 87]

• $C = \cos \theta \cos \gamma$ as a function of d:

• The maximal direct CP asymmetries for $B_d \to \pi^+\pi^-$ (upper curves) and $B_s \to K^+K^- \approx B_d \to \pi^{\mp}K^{\pm}$:

• Shaded regions: $\xi_d \equiv d'/d \in [0.8, 1.2]$ for $\mathcal{K} = 7.5$.

What about $\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(B_d \to \pi^+\pi^-)$?

- In the following, we assume that ϕ_d has been measured through the "gold-plated" mode $B_d \rightarrow J/\psi K_{\rm S}$.
- Using $\cos \theta = C/\cos \gamma$ to eliminate θ , extremal values of $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ can be obtained as a function of γ :

- For given γ , the allowed range for $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ is usually very large.
- On the other hand, a measurement of $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ would imply a rather restricted range for γ !
- If in addition to \mathcal{K} and $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ also direct CP violation in $B_d \to \pi^+\pi^-$ or $B_d \to \pi^\mp K^\pm$ is measured, γ and d, θ can be determined.

Extraction of γ

from

$B_{(s)} \to \pi K \text{ Decays}$

[M. Gronau and J. Rosner, Phys. Lett. B482 (2000) 71]

The $B_{(s)} ightarrow \pi K$ System

• Another interesting U-spin pair:

$$B_d^0 \to \pi^- K^+$$
 and $B_s^0 \to \pi^+ K^-$.

• Amplitudes in the strict *U*-spin limit: $\left[\epsilon = \lambda^2/(1-\lambda^2)\right]$

$$A(B_d^0 \to \pi^- K^+) = -P\left(1 - re^{i\delta}e^{i\gamma}\right)$$
$$A(B_s^0 \to \pi^+ K^-) = P\sqrt{\epsilon}\left(1 + \frac{1}{\epsilon}re^{i\delta}e^{i\gamma}\right).$$

- At first sight: 3 observables, depending on γ , r, δ .
- However, only 2 of them independent!
- Consequently, further information required:
 - Assuming both negligible rescattering effects and coloursuppressed EW penguins, we obtain

$$P = A(B^+ \rightarrow \pi^+ K^0) \Rightarrow 3$$
 independent observables:

$$\begin{array}{l}
A_0 = -A_s = 2r\sin\delta\sin\gamma \\
R = 1 - 2r\cos\delta\cos\gamma + r^2 \\
R_s = \epsilon - 2r\cos\delta\cos\gamma + \frac{r^2}{\epsilon}
\end{array} \right\} \Rightarrow \boxed{\gamma, r, \delta!}$$

- Complements "mixed" $B \rightarrow \pi K$ approach (see above).

Conclusions

- There are many approaches to extract γ .
- Particularly promising strategies for B experiments:

- $B \rightarrow \pi K, \pi \pi$ strategies:

- * Make use of flavour-symmetry relations and plausible dynamical assumptions.
- $\ast~$ Constraints on $\gamma~$ from CP-averaged branching ratios.
- * Data may point towards $\gamma > 90^{\circ}$ in contrast to UT fits and a puzzling situation for strong phases!?

- U-Spin strategies:

hadron machines

* Several approaches!

* Particularly promising systems:

 $B_d \to \pi^+ \pi^-, B_s \to K^+ K^- \& B_{(s)} \to \pi K.$

• As a "by-product", also insights into hadron dynamics:

Strong phases & penguin parameters!

• QCD factorization & PQCD: \Rightarrow

reduction of theoretical uncertainties and complementary approaches to probe γ through $B\to\pi K,\,\pi\pi$ decays!