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INTRODUCTION

A quantitative argument about
the origin of dark energy.

Blue shift -> transPlackian
energies.

Freeze-out of ultra-low
frequencies.

Key role played by winding
modes of closed strings.



Outline

First we discuss FRW cosmological
solutions for string theory in a D-
dimensional torus,

Then the quantum hamiltonian from closed
string theory uses a correspondence
principle between string and quantum
operators.

Coarse-graining is used to describe the
evolution of the system in an expanding
universe.

The end-result 1s a dispersion relation
between frequency and wave number
decreasing exponentially for very large
wave number.



Coarse graining

Choose 3 expanding dimensions
and D-3 compactified.

String scale is UV lattice cutoff.

Divide into system and
environment.

Integrate out environmental
degrees of freedom.
Non-equilibrium dynamics
described by such sequential
rescaling as universe expands.
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2. TOROIDAL STRING

COSMOLOGY

An interesting string cosmological scenario
was proposed by Brandenberger and Vafa
in 1988.

We follow the spirit of BV, but look more
closely at the winding-momentum
correlation for closed strings.

One may use T duality of closed strings to
argue that there 1S a maximum temperature
and before that one uses the T-dual
description with R > 1/R.

T-duality 1s an exact symmetry under

R <->1/R and m <> w.



POSSIBLE REASON
FOR D=3

AS the D uncompactified dimensions
expand the winding modes must decrease
in number by annihilation.

Strings do not generally meet in D > 3 so
the necessary annihilation cannot take
place and the expansion will stop.

To avoid a quick stop to the expansion one
needs D = 3 (or less).

We will phenomenologically choose the
maximum value D=3 in our toroidal
solution.



TR

Cosmological solutions on T were found by
M. Mueller in 1989. He studied the cosmology of
bosonic strings propagating in the background
fleld defined by a time-dependent dilaton field

®(¢) and spacetime metric:

dsg = G/ X)dXHdXY = —di*+ £ ahrR*( X}

L

The radii R;(t) are scale-dependent scale fac-
tors to be used later in coarse-graining,

The equations of motion of the bosonic string
in background fields are obtained from the ac-
tion:
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Freedom from Weyl anomalies leads to the
background field equations:
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Using the toroidal metric these reduce to:
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The solutions are of the form

E—-"i’{ﬁ) = tp Rq(t) e EEFT

with constraints

D 2 [
B = P pi=1—p

=

From this complex of solutions, we can choose
D=3 expanding (common p;) and D-3 compact-
ified (e.g. common p;) dimensions.

Because of the toroidal topology the three
expanding dimensions contain both types of
modes: momentum and winding. To under-
stand the dynamics we need to discuss the for-
mulation of a quantum hamiltonian describ-
ing such (noninteracting) strings on this back-
ground. Such a hamiltonian framework has
been developed by mathematical physicists al-
ready in the nineties.



3. QUANTUM
HAMILTONIAN

For classical strings exact solutions are
known for a variety of backgrounds in
closed string field theory.

They are found by solution of a two-
dimensional non-linear sigma model.

In particular, for the present case a
quantum hamiltonian whose KE terms give
the zero modes and interactions generate
string excitations and correlations.

This describes first-quantized weakly
coupled strings.
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We include the dynamics of both modes, mo-

mentum modes p;; = m/R; and winding
modes with momenta py ; = w/R;.

Here we have defined the dimensionless quantity
f

R; = Ri(a )42

We choose a cosmology with three toroidal radii
equal and large R, > 1 in Planckian units (or
string scale units) and the other (D —3) toroidal
radil equal and small.

Thus R(t) = a(t) becomes the scale factor in
the 3 4+ 1 metric while E. corresponds to the
radius in this factorizable metric of the (D — 3)
compact dimensions z; :

ds%} — _dt? + A Rz(tjdﬂ]g + il?rR%(t)dE?

— a(n)[—dn*+ dy?] + ds%_5



The toroidal solutions of Mueller give the time
dependences of the radii;

R(t) = ayt"

Ro(t) = apthc

The values of pr; and pr depend on the di-
mensionality [) in an interesting way, If we
assume, for example, that the dilaton is time-
independent (p = 0) and that the compactifica-
tion 18 1sotropic we find that for 4 < D < o
then 0.5 < pry < 1/+/3 =~ 0.577.

It ) = 4 the scale fator behaves as in a
radiation-dominated universe. If D = 5 we can

assume that (D —4) additional dimensions have
f

P < pg to achieve the same result. In what
follows we will not need to specialize to this par-
ticular solution.



For the dark energy, we have in mind the corre-
lation between momentum and winding modes.
The kinetic energy terms are well-known but
how best to characterize the interactions be-
tween these two types of modes? Some im-
portant aspects of the problem were addressed

and partially solved by: K Kikkawa et al Prog.
Theor. Phys. 98, 687 (1997).

At temperatures T much below the string
Tpianck there is little correlation but for 7' ~
I'pioner there is.

The partition function can be calculated by:
Z = Yigexp(—nges)

where ng 1s the number of strings in state o
with energy e, with:

T 2 : o~



Here o counts over (m,w) with the crucial con-
straint V — N = mw. N and N are sums over
left- and right- moving string excitations.

By now, we are considering only 3 large spatial
climensions.

For the string state in place of p; and py for
the momentum and winding respectively it is
advantageous to use fields with momenta £k =
p1-+po and kp = p;—p2 as can be seen from fhe
exact solutions of e.g. Tseythn [A.A. Tseytlin,
Class. Quant. Grav. 12, 2365 (1995)].

In writing a CGEA (Coarse-Grained Effective
Action) the kinetic terms are nnambigiious and
the interaction terms in the exact classical solu-
tion respect surprising simplicity (quartic only)
and T-duality, the latter being extremely re-
strictive.

{5:



Explicitly the quantum hamiltonian for a par-
ticular example with uncompactified z1 and z9
written in polar coordinates z1+1z9 = peiﬁf’ and
x3 also uncompactified (but could be compact-
ified along with similar coordinates) together
with time and one additional compactified di-
mension y C (0,27 R).

Here Jy, g are bilinear quadratic operators. J7
18 quartic.

13
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For an exact solution for the hamiltonian of

the string in a toroidal background a quartic
potential energy was advocated and found in

J.G. Russo and A.A. Tseytlin, Nucl. Phys.
B448, 293 (1995).

We accept this indication that for closed strings
on a torus the quantum hamiltonian contains
only quartic interactions for our present case of

(T3) % (T(p_g))*(time).

such a hamiltoman 1s, however, for a static
background, i.e. a constant scale factor R(t).

5o we now explain our T-dual calculation in the
coarse-grained effective action (CGEA ) formal-
ism where the dynamics of an expanding back-
eground is replaced by scaling on a static back-
around.

rg.
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4. COARSE-
GRAINING

The dynamics is non-equilibrium due to
the expanding background spacetime.

All information about the evolution of the
momentum and winding modes will be
contained in the effective action.

The path integral will be written in terms
of the quantum fields described above.

We work 1n a conformally flat background
metric as characterized earlier.

Rescaling of the conformal factor (a) will
be accomplished through the coarse-
graining technique.



The conformal background is:

dsp = a(n)’[—dn® + dy”] + dsg_3

We define a momentum field ¢1(R,z) and a
winding field &9( R, ) such that:

i(x) = [ €Pehi(p;)d°p;

[IN¢i[° @z = | dpipicy(pi)
where
V = Ro/dx = 0/0y

and p; = p1, p2.

Define also:

vr,R(R, ) = ¢1(R, ) £ ¢o(R, z)

A0,



similarly there is another set of fields ¢ ,
that are functions of the compactified dimen-
SIONS 2.

However, their energy contribution to the to-
tal hamiltonian density is proportional to the
volume of the compact space and to pﬁ where
pq are the components of momenta in the addi-
tional dimensions. This merely adds a constant
to the logarithm of the partition function.

Thus we focus on the fields ¥y p living mn our
3+1 spacetime.

&



242.

The quantum hamiltoman that describes the
energy of our two string modes in the D=3
expanding dimensions including both the KE
piece H = Ly + Ly and the higher string exci-
tations (N + N — 2)/(¢) is similar to that for
spin waves on a dual lattice.

It can be written:

Hs = |v’*ﬁf’?ﬂ|2+lv'¢ﬁ|z
+mig(lbr|* + [rl%)

+a1(|or | + [PRl*) + galvp [l R|?
(1)

where

W = L(tnby ‘|"“:1E}:L)1 WR = E(ﬂﬂgﬁ+ﬂv?§5;{*)



The periodic lattice condition

-

N — N = Ym;w;

infroduces an interaction term of the form
VyrVip In terms of the two-component
state |U >= |¢)1, 409 > the hamiltonian reads:

H = |VU|* + VXV + m3| ¥
+g1 [T [* + (gg — 21) [T X T |
(1)

where

5

This system is known as the dual momentnm-
space lattice and for go = 2g; reduces to the
XY7Z-model of condensed matter theory. We
shall restrict to the XYZ model for simpleity
(go = 2g7) for the rest of the talk.



Such a periodic lattice system has a solution
with respect to lattice translation invariance ~
e P with the lattice spacing equal to the string

scale Vo .

The interaction term lifts the degeneracy be-
tween energy eigenstates and as a result the gap
energy produced between the ground state and
higher excitation states is:

pgﬁp = p?| cos(26)| = p?|2 cos*(6) — 1

in which

pl = pla’ = o (5} + p}) = J[
and 6 — 0 + epl. Therefore

zp =1+ A, < 2 cosh?(pl)

2%,



The gap energy introduces a correction to the

kinetic energy such that in momentum space the
hamiltonian reads

2 2 9 §
H = 2pp°| U] + mg|U|° + g1 9|

In order to recover the canonically normalized
kinetic term we renormalize:

T — ¥ =2/"T
ma — Mo = 2. e = :
VR S

whereupon:

H = |V + | ¥ + g0

25



The action in all D spatial dimensions is there-
fore:

Sp = [dtRodP =3 zpa(t) Pa(Hs[T(2)] +
+HC‘[I‘FC@(3)D
= Vo [ a(t)dtd>zHs[U(z)] +
+Vir [ Rodtd P =% 21 [0 4(2)]

where Vir, Vo are the volumes obtained by in-
tegrating out the compact, uncompactified di-
mensions respectively.

The partition function is:
/4= Zo s
Zc=[DV¥¢, St dtdP= o H oW ]

7 — DV C ralt)dtd e Hs[ U]
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The contribution of Z; is a simple Gaussian
with the result:

4o = | D¥g ae_VU 'r'dlﬂ_S}FQA”-'I"EMPEIFG,H

s | T
Hﬂ\‘ Aaﬁf"

leading to

7= N2

with the volume Vi reabsorbed into the param-
eters of Hs in Z3.



Non-equilibrium
dynamics

Want a simplified description for the
dynamics of our non-equilibrium system
consisting of both momentum and winding
modes.

This is done by carrying out the necessary
steps of “coarse-graining’”:

1) distinguish the system from the
environment.

2)coarse-grain the environment.

3) measure the influence of (2) on the
system giving an effective dynamics.

28



=N AFERY ™

COARSE-GRAINING FOR D=3.

We separate our modes into system (S) and
environment (E) and integrate out the degrees

of freedom for E.

The environment (E) is chosen as all short
wavelength modes with momenta:

% <pl = 1ﬂ, [(m/R)?+ (wR)M? < A
b = aft)/a(0) and a(?) plays the role of the
collective coordinate describing the E degrees
of freedom. The non-equilibrium dynamics is
replaced by this scaling. The system (S) modes
satify: p’g < % At mitial fimes when 6 =1 all
our modes are i the system. As time evolves,
b > 1 and modes systematically transier from 5
to B. As ¢ becomes large all the modes except
m < RA,w = 0 have transferred to E.




After splitting the modes into S + E the action
can be separated as:

S = Ss[¥s]+ Sol¥g] + S7[¥p, Vsl
where

= fﬂ(f)dtfdgm(llﬂggglfpg il Q'l@%’)
So = [a(t)dt | &PzVpG Vg

St = Ja(t)dt [ d>zg) (4T3 5
+6U eV + 40 W + V|



31

The 5 and E Green’s functions are respec-
tively:

Gslp® < AJb] = [(p°)? +ad| !

Gelp” > A = [(p")* + mg]
The total Green's function i1s thus:
G[p] = Gg+ Gg

After integrating out the high energy modes we
are left with an effective action S ¢ i which dep-

nds only on the system variables p° < A/bsuch
that:

Sesf[¥s] = Ss[¥g] + AS[¥g]

The term AS results from the mteraction of the
system with the environment.



—— i = — =

The A5 modifies the parameters in S, ¢ ¢ by:

m’ =g+ 8mg  §= g1+ 8d

]

(Some more details of this are in the Appendix
of the BEM paper or in the papers of Bei-Lok

Hu)
We rescale variables in .S, ¢ ¢ by:

p=bp  F(p)=b" D2y /b)

The original cutoff A and range of momenta
are restored after resclaing of parameters in a
static spacetime. The procedure is repeated n
times for small time increments befween the 1ni-
tial and final times.

32



33.

Sepp(¥) = 572 1 dPpi(p /1)

i’ +§ < U2 > §(p /b)
= [dPp¥(p) |(p)*+

b2’ 4+ 64Dy < 2 -] b (p)

To have the same functional form after rescaling
requires that we redefine:

I
m - =b"m gj-:b"c“%

Repeating this procedure n times and then let-
ting n — oo results in RG equations for cou-
plings.



EUNAVERT

The dispersion relation for the fluctuations
1s proportional to the inverse of the two-point
function. The two-point function shows that
the dispersed frequency G *[p] = w|p] has the
ultraviolet behavior

—‘E'\/::?p

w-]pﬁ.{m Lk

()
~ ¢
2 cosh? pVa

We may understand this physically by observ-
ing that just as correlation functions fall off ex-
ponentially i x-space. here on the dual lattice
they fall exponentially in p-space. This 13 re-
lated to T-duality of the string theory.

The above result leads to our interpretation of
the dark energy.

34



5. DARK ENERGY

We have seen that the correlation between
momentum modes and winding modes
leads to a dispersion relation which fall
exponentially at high k.

Now we assert out interpretation of the
dark energy as frozen-in non-dynamical
modes.

Those modes with frequency below the
present Hubble constant are relevant.






S ——

From the Figure and using that the occupancy
numbers give factors of order one (a separate

caleulation) the fraction of the total energy in
tail modes is:

Ptail—modes . ‘rﬁ??f kdk I""J(k")dw
Ptotal 5" kdk rw(k)dw

Focus on the decisive numerator:

—~2Va'k
(kg 2Ve + 1](Hola/)?
_2\/;'% ( H (Ve

[ kdk<

Using:
sl /
e 2Vaky — H%ﬂf

We find that, up to power law prefactors, the
basic result is that

4

—

H
() ~ 10 120

MPE&HC&

Ptail—modes _
Ptotal

This 1s the main result of this work.
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DARK ENERGY
FROM STRINGS

In the BV model there are both modes -
momentum and winding at all stages in the
toroidal evolution of the cosmology.

At the string temperature (the maximum
temperature) there 1s a strong correlation
between them due to the BCs.

The non-equilibrium dynamics, computed
by coarse graining, implies a frozen-in
uniform condensate of the winding modes
with correct density for Dark Energy.

28



ERAVERY ™

ALTERNATIVE FOR
DARK ENERGY

* The cosmological constant of Einstein
(1917) involves extreme fine-tuning.

* Quintessence involves a slowly-varying
scalar field, is arbitrary and possesses
degenerate solutions for the same cosmic
parameters.

31.



STRINGY DARK
ENERGY

Has some definite advantages:

Gives a satisfactory and intuitive fate of
the winding modes of the BV model.

Contains no fine tuning since the answer is
simply expressed in terms of two
quantities, the Hubble constant and the
Planck mass, both known since the 1920°s.

Preferable to cosmological constant or
quintessence.



