

	S
	Ćġ
(
L L	n
	J
•	
-	
-	б Т

Paoti Chang National Taiwan University January 25, 2002 WIN 2002, Christchurch, New Zealand

- Introduction
- B Decays to Charmonium
 - B to Single Charm
- B to Double Charm
 - Summary

January 25, 2002 WIN 2002, Christchurch, New Zealand

Hadronic B Decays (page 1)

	oduction		9
Motiv	ation		
– Provi	de large data sample to search for ind	irect or direct CP violation	
- Study	$m{y}$ on hadronic B decays help understa	nd the underlying quark decay mechanism	
– Meas	ured exclusive branching fractions are	a small fraction of the inclusive one.	
• Exper	imental Technique		
	$\Upsilon(4S)$	LEP, CDF, SLD	
B Idenf.	$M_{bc}(M_{ES}) \ \Delta E$	Reconstructed mass	
Bkg. Sup	p. Various event shape var	ables Distinct decay vertex	
	$R_2,\cos heta_B,$ helicity \dots	large B momentum	
	PID.	Di-leptons (CDF)	
• Summ	narize recent results mainly fror	ו B factory experiments	
- CLE(O (9.7 M $Bar{B}$); Belle (23 M $Bar{B}$); Ba	Bar (23 M $Bar{B}$)	
January 25, 2002 WIN 2002, Christchurch, Ne	ew Zealand	s (page 2) National Tai	Paoti Chang an University

• Extensive studies were mad $J/\psi \rightarrow l^+l^-, \psi(2S) \rightarrow l^+l^-$	e to study two bod - $,\psi(2S) ightarrow J/\psi\pi^+$	y B decays to char $\pi^-, \chi_{c1} ightarrow J/\psi\gamma$	monium:
 Some were used to study C 	P violation and sor	me were for calibrat	ion.
See $\sin 2\phi_1(2eta)$ talks give	en by Jan Stark, l	Martin Sevior and	d Zhi-zhong Xing
Channel	BaBar ($ imes 10^{-4}$)	Belle ($ imes 10^{-4}$)	Previous ($\times 10^{-4}$)
$B^0 \rightarrow J/\psi K^0(K^0_S \rightarrow \pi^+\pi^-)$	$8.5 \pm 0.5 \pm 0.6$	$7.7 \pm 0.4 \pm 0.7$	$9.6 \pm 0.9 *$
$(K_S^0 \to \pi^0 \pi^0)$	$9.6\pm1.5\pm0.7$	I	ı
K_L^{0}	$6.8 \pm 0.8 \pm 0.8$	I	ı
AII	$8.3 \pm 0.4 \pm 0.5$	I	ı
$B^+ \to J/\psi K^+$	$10.1 \pm 0.3 \pm 0.5$	$10.1 \pm 0.3 \pm 0.8$	10.1 ± 1.0 *
$B^0 \to \psi(2S)K^0 (l^+l^-)$	ı	$6.0\pm1.1\pm0.7$	I
$(J/\psi\pi^+\pi^-)$	I	$7.2\pm1.1\pm1.1$	ı
All	$6.9 \pm 1.1 \pm 1.1$	I	5.0 ± 1.3 \diamondsuit
$B^+ \rightarrow \psi(2S)K^+ \ (l^+l^-)$	ı	$6.7\pm0.6\pm0.7$	I
$(J/\psi\pi^+\pi^-)$	ı	$5.7\pm0.5\pm0.8$	ı
All	$6.4\pm0.5\pm0.8$	ı	5.8 ± 1.0 *
$B^0 ightarrow \chi_{c1} K^0$	$5.4 \pm 1.4 \pm 1.1$	$3.1\pm0.9\pm0.4$	$3.9^{+1.9}_{-1.4}$ *
$B^+ \rightarrow \chi_{c1} K^+$	$7.5\pm0.8\pm0.8$	$6.1\pm0.6\pm0.6$	10.0 ± 4.0 *
$B^0 \to \chi_{c1} K^{*0}$	$4.8\pm1.4\pm0.9$	I	< 21 *
* PDG (http://pdg.lbl.g	;ov);	oration PRD 63, 031	1003 (2001).

` 2

Hadronic B Decays (page 3)

January 25, 2002 WIN 2002, Christchurch, New Zealand

3

B Decays to Charmonium -

Paoti Chang National Taiwan University

Measurement of $B \rightarrow J/\psi\pi$

Channel	BaBar ($ imes 10^{-4}$)	Belle ($ imes 10^{-4}$)	Previous ($\times 10^{-4}$)
$B^0 \to J/\psi \pi^0$	$0.20 \pm 0.06 \pm 0.02$	$0.24 \pm 0.06 \pm 0.02$	$0.25\substack{+0.11 \\ -0.09}$
$B^+ \to J/\psi \pi^+$	0.39 ± 0.08	$0.52 \pm 0.07 \pm 0.07$	0.51 ± 0.15

- Both Cabbibo suppressed and color suppressed \Rightarrow could have large direct CP violation
- Provide a good test for factorization. 5% of Cabbibo allowed decays

Polarization in $B \to J/\psi K^*$

- Pseudo-scalar to vector-vector decays have orbital angular momentum 0, 1, 2. Three decay amplitudes govern the transition
- Measure $\sin 2\phi_1(\beta)$ using the decay, $B^0 \to J/\psi K^{*0}, K^{*0} \to K_S^0 \pi^0$ Need angular information to extract the CP content
- Provide a test of factorization hypothesis The decay amplitudes should have relative phase 0 or $\pi \rightarrow No$ final state interactions

BELLE $B \rightarrow J/\psi K^*$ Cont. • Express in transversity basis: $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{tr}d\cos\theta_{1}d\phi} = \frac{9}{32\pi} \times$ $[2\cos^2 heta_1(1-\sin^2 heta_{tr}\cos^2\phi_{tr})|A_0|^2]$ $+\sin^2 heta_1(1-\sin^2 heta_{tr}\sin^2\phi_{tr})|A_{\parallel}|^2$ $+\sin^2\theta_1\sin^2\phi_{tr}|A_\perp|^2$ $+\sin^2\theta_1\sin^2\phi_{tr}\sin^2\phi_{tr}Im(A_{\parallel}^*A_{\perp})$ $+\frac{1}{\sqrt{2}}\sin 2\theta_1 \sin^2 \phi_{tr} \sin 2\phi_{tr} Re(A_0^*A_{\parallel})$ $-\frac{1}{\sqrt{2}}\sin 2\theta_1 \sin 2\theta_{tr} \cos \phi_{tr} Im(A_0^*A_\perp)]$ $|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$ $|A_0|$ is the lognitudinal polarization of J/ψ • $|A_{\perp}|$ is the CP odd components for $J/\psi K^{*0}(K^{*0} \to K^0_S \pi^0)$ • Four parameters from the fit: $|A_0|^2$, $|A_{\perp}|^2$, $arg(A_{\parallel})$, $arg(A_{\perp})$.

- Observe higher mass $K\pi$ state $(K_2^*(1430))$ by BaBar and Belle
- Besides $K^*(892)$ and $K_2^*(1430)$, there exists a S-wave (non-resonant) contribution. Estimate the non-resonant contribution in $K^*(892)$ region from $K^*(892)$ sideband.
- Perform an un-binned likelihood on events with PDFs from signals, combinatoric background, feed-down component and non-resonant part.
- Assign 100% error on non-resonant contribution (BaBar and Belle)
- CDF used $K^{*0} \to K^+\pi^-$ decays only but also studied $B_s \to J/\psi\phi$.

BELLE

Polarization Results

	$ A_0 ^2$	$ A_{\perp} ^2$	$arg(A_{\parallel})$	$arg(A_{\perp})$
CLEO	$0.52 \pm 0.07 \pm 0.04$	$0.16 \pm 0.08 \pm 0.04$	$3.00 \pm 0.37 \pm 0.04$	$-0.11 \pm 0.46 \pm 0.03$
CDF	$0.59 \pm 0.06 \pm 0.01$	$0.13^{+0.12}_{-0.09} \pm 0.06$	$2.2\pm0.5\pm0.1$	$-0.6\pm0.5\pm0.1$
BaBar	$0.60 \pm 0.03 \pm 0.02$	$0.16 \pm 0.03 \pm 0.01$	$2.50 \pm 0.20 \pm 0.08$	$-0.17 \pm 0.16 \pm 0.07$
Belle	$0.60 \pm 0.03 \pm 0.04$	$0.19 \pm 0.04 \pm 0.04$	$2.86 \pm 0.25 \pm 0.05$	$0.01 \pm 0.19 \pm 0.08$
CDF	$0.61 \pm 0.14 \pm 0.02$	$0.23 \pm 0.19 \pm 0.04$	$1.1 \pm 1.3 \pm 0.2$	-
$(J/\psi\phi)$				

Belle Preliminary

- Results on four experiments are consistent with each other.
- Lognitudal polarization $(|A_0|^2 = \frac{\Gamma_L}{\Gamma})$ is dominant; parity-odd fraction is small.
- $arg(A_{\parallel})$ seems to be differ from π , indicating the presence of final state interactions.

Observation of $B \to J/\psi \phi K, B^+ \to \chi_{c0} K^+$

BELE

3.8

5.30

B Decays to Single Charm

- Observation of Cabbibo Suppressed Decays (Belle, 11.1 M $B\bar{B}$)
- Naive Tree Level Expectation

BELLE

 $B \to D^{(*)}\pi^-, D^{(*)}K^-$, Belle

	PID(K)<0.8	PID(K)>0.8	Sig	$Br(DK)/Br(D\pi)$
	$N(D\pi)$	N(DK)	$N(D\pi)$		
D^0h^-	2402.8 ± 97.8	135.7 ± 15.6	49.0 ± 11.3	11.3	$0.0770 \pm 0.0094 \pm 0.0058$
D^+h^-	681.9 ± 32.1	32.9 ± 7.3	10.1 ± 4.9	6.0	$0.066 \pm 0.015 \pm 0.007$
$D^{*0}h^{-}$	584.8 ± 32.4	32.3 ± 7.7	6.5 ± 4.9	5.7	$0.076 \pm 0.019 \pm 0.009$
$D^{*+}h^-$	640.9 ± 30.8	35.4 ± 7.1	20.6 ± 5.7	7.5	$0.072 \pm 0.015 \pm 0.006$

- Ratio agrees with theoretical prediction. Earlier CLEO result (3.3 M $B\bar{B}$): $Br(D^0K^-)/Br(D^0\pi^-)$ $= 0.055 \pm 0.015 \pm 0.005$
- First observation of $\bar{B^0} \rightarrow D^+ K^-$, $B^- \rightarrow D^{*0} K^-, \bar{B^0} \rightarrow D^{*+} K^-$
- First observation of $B^- \to D^0 K^{*-}$ 1. Reconstruct $K^{*-} \to K_S^0 \pi^-$ 2. $N = 15.0 \pm 4.6$ 3. $Br(B^- \to D^0 K^{*-})/Br(B^- \to D^0 \pi^-)$ $= 0.116 \pm 0.036 \pm 0.015$

- Direct CPV on $B^- \rightarrow D_{CP}K^-$, Belle

- Extract $\phi_3(\gamma)$ from $B^- \to D^0_{1,2}K^-$, D_1 and D_2 are CP even and CP odd eigenstates.
 - Ignore $D^0 \overline{D}^0$ mixing:

$$A_{1,2} = \frac{\mathcal{B}(B^- \to D_{1,2}K^-) - \mathcal{B}(B^+ \to D_{1,2}K^+)}{\mathcal{B}(B^- \to D_{1,2}K^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)} = \frac{2r\sin\delta'\sin\phi_3}{1 + r^2 + 2r\cos\delta'\cos\phi_3}$$
$$R_{1,2} = \frac{\mathcal{B}(B^- \to D_{1,2}K^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)}{\mathcal{B}(B^- \to D_{1,2}\pi^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)} = 1 + r^2 + 2r\cos\delta'\cos\phi_3$$
$$\delta' = \begin{cases} \delta & \text{for } D_1 \\ \delta' = \begin{cases} \delta & \text{for } D_1 \\ \delta' + \pi & \text{for } D_2 \end{cases}, \end{cases}$$
where r is the ratio of amplitudes, $r \equiv A(B^- \to D^0K^-)/A(B^- \to D^0K^-); \end{cases}$

 \bar{D}^0

-M

ŝ

-M

 B^{-}

υ

9

 K^{-}

 \overline{n}

ī

n

 \mathbf{n}

 B^{-}

 D_0

S υ

Paoti Chang National Taiwan University

Hadronic B Decays (page 14)

WIN 2002, Christchurch, New Zealand January 25, 2002

- Results on $B^- \rightarrow D_{CP}K^-$, Belle

Preliminary

CP –	$A_2 = -0.22^{+0.26}_{-0.22} \pm 0.04$	$-0.60 < A_2 < 0.21$	$R_2 = 1.37 \pm 0.36 \pm 0.12$
CP +	$A_1 = 0.29^{+0.29}_{-0.24} \pm 0.05$	$-0.14 < A_1 < 0.79$	$R_1 = 1.38 \pm 0.38 \pm 0.15$
	A_{CP}		R_{CP}

CP +: $K^+K^-, \pi^+\pi^-$ CP -: $K_s\pi^0, K_s\omega, K_s\eta, K_s\eta'$ Data sample: 29.1 fb⁻¹ $R_{1,2}$

$$\Rightarrow \frac{R_{1,2}}{2}(1 - \sqrt{1 - A_{1,2}^2}) \le \sin^2 \phi_3 \le \frac{R_{1,2}}{2}(1 + \sqrt{1 - A_{1,2}^2}) \le R_{1,2}$$

Provide a constraint to ϕ_3 in the future with more data.

January 25, 2002 WIN 2002, Christchurch, New Zealand

Paoti Chang National Taiwan University

Hadronic B Decays (page 15)

Hadronic *B* Decays (page 16)

- Observe significant yields on $\bar{B^0} \to D^0 \pi^0, D^0 \eta, D^0 \omega$
- Obtain $B\bar{B}$ background from MC; Fit ΔE to obtain signal yields.

BELLE

Hadronic *B* Decays (page 17)

- Color Suppressed Cont.

BELLE

- Significant signal yields observed in $\overline{B} \to D^{*0}\pi^0$, $D^{*0}\eta$, or $D^{*0}\omega$.
- Yields = $D^{*0}\pi^{0}$: 26.4 $^{+7.7}_{-7.1}$ $^{+1.6}_{-2.2}$ (4.1 σ) $D^{*0}\eta$: 7.8 $^{+3.6}_{-3.0} \pm 0.7$ (3.3 σ) $D^{*0}\omega$: 16.1 $^{+6.8}_{-6.0} \pm 2.4$ (3.0 σ)

Branching Fraction ($ imes$	$10^{-4})$
------------------------------	------------

Mode	Belle	UL	CLEO 98	CLEO 01	ΤH
$D^0\pi^0$	$3.1 \pm 0.4 \pm 0.5$	_	< 1.2	$2.6 \pm 0.3 \pm 0.6$	0.7
$D^{*0}\pi^0$	$2.7 {}^{+0.8}_{-0.7} {}^{+0.5}_{-0.6}$	—	< 4.4	$2.0\pm0.5\pm0.7$	1.0
$D^0\eta$	$1.4 {}^{+0.5}_{-0.4} \pm 0.3$	_	< 1.3	-	0.5
$D^{*0}\eta$	$2.0 \ ^{+0.9}_{-0.8} \pm 0.4$	< 4.6	< 2.6	-	0.6
$D^0\omega$	$1.8\pm 0.5 \ ^{+0.4}_{-0.3}$	_	< 5.1	_	0.7
$D^{*0}\omega$	$3.1 {}^{+1.3}_{-1.1} \pm 0.8$	< 7.9	< 7.4	_	1.7

• Need additional corrections to the model:

class-2 a_2 is process dependent or final state rescatterings.

Hadronic B Decays (page 20)

WIN 2002, Christchurch, New Zealand

National Taiwan University

()

- Same procedure as the previous one.
- Use $D^0 \to K^- \pi^+ \mod$
- $\mathcal{B} = (0.30 \pm 0.07 \pm 0.06)\%$

$$R_{0-} = \frac{\Gamma(\overline{B}^0 \to D^{*0} \pi^+ \pi^+ \pi^- \pi^-)}{\Gamma(\overline{B}^0 \to D^{*+} \pi^+ \pi^- \pi^- \pi^0)}$$

= 0.17 \pm 0.04 \pm 0.02

• Check $D^{*0}\pi^+$ and $D^{*0}\pi^-$ masses See enhancement around $D^{**+}(2400)$ No structure on $D^{*0}\pi^-$ as expected. No feature on $\pi^+\pi^+\pi^-$ mass from $D^{*0}\pi^-$ peak.

- Full reconstruction
- $N = 11.2 \pm 4.0 \ (4.1\sigma), M_{bc}$ fit
- $\mathcal{B} = (10.4 \pm 3.8 \pm 2.2) \times 10^{-4}$
- Partial reconstruction
- Reconst. D^+ and π_s from D^{*-}
- Extract yields from $\cos \alpha$, α is the angle between D^+ and π_s in CM frame
- Use polarization angle (θ) from kinematics: $|\cos \theta| > 0.5 \rightarrow \text{signal enriched region}$
- Estimate background from large MC
- Divide sample into lepton tagged and non-tagged
- $\mathcal{B} = (18.4 \pm 4.3^{+6.8}_{-6.3}) \times 10^{-4}$

BELLE $B^0 \rightarrow D^{\pm}D^{*\mp}, B^+ \rightarrow D^{*+}D^{*0}$, BaBar preliminary • See signals in both channels Events / 0.0025 GeV Events / 0.0025 GeV 1. $N(D^{\pm}D^{(*\mp)}) = 31$ BABAR -BABAR 18 16 14 12 $Bkg = 10.5 \pm 1.7$ Sig. = 4.3σ 2. $N(D^{*+}D^{*0}) = 39$ $Bkg = 20.3 \pm 0.5$ 5.22 5.26 5.28 24 5.26 5.28 5.3 Energy-Substituted Mass (GeV) 5.24 Energy-Substituted Mass (GeV) Sig. = 4.1σ BaBar Belle Previous Decay $Br(\times 10^{-4})$ $Br(\times 10^{-4})$ $Br(\times 10^{-4})$

5.3

5.300

 $B \rightarrow D^{(*)}D^{(*)}K$ cont.

♠ Belle preliminary results $N(D^{*-}D^{0}K^{+}) = 25.2 \pm 6.5$ $\mathcal{B} = (3.2 \pm 0.8 \pm 0.7) \times 10^{-3}$

Branching Fraction ($\times 10^{-3}$)

Mode	BaBar	Belle	CLEO
$D^{*-}D^0K^+$	$2.8\pm0.7\pm0.5$	$3.2 \pm 0.8 \pm 0.7$	$4.5^{+2.5}_{-1.9} \pm 0.08$
$D^{*-}D^{*0}K^+$	$6.8 \pm 1.7 \pm 1.7$	-	$13.0^{+7.8}_{-4.7} \pm 2.7$
$D^{*-}D^{*+}K^+$	$3.4 \pm 1.6 \pm 0.9$	-	< 7
$D^{(*)+}\overline{D}^{(*)-}K^0_S$	Seen	-	-

- Branching fraction becomes more precise.
- It's a good start. More will come.

	Summary	(
	• More precise and new measurements on B decays to charmonium.	
	- $\mathcal{B}(J/\psi\pi)$ agrees with naive expectation	
	- Suggesting FIS in $B \to J/\psi K^+$ (892); Ubserve S-wave contribution. - Observations of $B^+ \to J/\psi \phi K^+$, $\chi_{c0} K^+$, $B \to J/\psi K_1(1270)$	
	 Observe many new B decays to single charm 	
	- All B decays to $D^{(*)}K^{(*)-}$ are measured \Rightarrow agree with prediction	
	– First attempt of CPV on $B^- ightarrow D_{CP} K^- \Rightarrow$ constrain $\phi_3(\gamma)$	
	– Large Bf. on $D^{(*)0}\pi^0, D^0\eta, D^0\omega \Rightarrow$ FIS. or modification of a_2	
	– Observation of $\overline{B} o D^{(*)} \rho'^-, \rho'^- o \omega \pi^-$	
	• Search for B decays to double charm	
	– Precise measurements on $B^0 ightarrow D^{*+}D^{*-}, Bf. \sim 10^{-3}$	
	– First observation of $B^0 ightarrow D^{\pm}D^{*\mp}, Bf. \sim 10^{-3}$	
	– More precise results on $B \to D^{*-}D^{(*)}K^+$, confirm $b \to c \bar{c} s$ can	
	proceed through $B o D^{(*)}\overline{D}^{(*)}K$	
-		\mathcal{A}
January	25, 2002 Hadronic <i>B</i> Decays (page 28)	Paot

()

Paoti Chang National Taiwan University

WIN 2002, Christchurch, New Zealand