Rare Hadronic B decays at BaBar

Mirna van Hoek University of Colorado

On behalf of the BaBar Collaboration

18th International Workshop on Weak Interactions and Neutrinos January 21-26, 2002 Christchurch, New Zealand

Motivation

- 2 main categories of rare decays:
 - b → u transition
 CKM suppressed:

- Comparable order of magnitude to Penguin diagrams
- Interferences → Phases, CP violation...

- Massive particles can contribute to the loop: top, Higgs, SUSY ...
- Penguins complicate CP measurements

Data Sample

• Rare Decays (Br ~ 10^{-5}) \Rightarrow Need high luminosity

Run1: ('99-'00) 20.7 fb⁻¹ on-peak 2.6 fb⁻¹ off-peak 22.7 x 10⁶ B pairs Run2: ('01-'02) up to now 40 fb⁻¹ (and counting)

Common Analysis Strategies

- Continuum background rejection:
 - Event shape
- B candidate selection:
 - ΔE , m_{ES}/m_{EC}
- Further pre-selection:
 - PID, resonance masses
- Signal extraction:
 - Cut and count, ML fit, Neural Net
- All Analyses Blind!

Background Rejection

- Background dominated by continuum qq
- Use event shape variables:
 - Ratio of Fox-Wolfram moments: R₂/R₀
 - Cosine of B thrust axis / rest of event : $\cos\theta_{T}$
 - Cosine of B decay axis / beam axis : $\cos\theta_{B}$
 - Energy flow around B thrust axis
- And many more
 Signal Bkgd
 Old
 Old

qq

e⁺

Combine these variables into a Fisher discriminant or a Neural Net **e**⁻

B signal variables

$$e^{+}e^{-} \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$$

B mesons ~ at rest $(p_{B}^{*} \approx 325 \text{ MeV/c})$
 $\cdot q_{B1}^{2} = q_{B2}^{2} \Rightarrow \Delta E \equiv E_{B}^{*} - E_{beam}^{*}$ (CMS)
 $\cdot \text{ Typical: } \sigma(\Delta E) \approx 25 - 40 \text{ MeV}$
 $\cdot q_{B1}^{2} = m_{B}^{2} \Rightarrow$
 $m_{EC} \equiv \sqrt{E_{B}^{*} - p_{B}^{*}}$ (kinematic fit) (CMS)
 $m_{ES} \equiv \sqrt{(\frac{1}{2}s + \mathbf{p_{0}} \cdot \mathbf{p_{B}})^{2} / E_{0}^{2} - p_{B}^{2}}$ (LAB)

- Beam energy better known than B energy
- Typical: $\sigma(m) \approx 2.8 \text{ MeV/c}^2$

Cut & Count

- Cut optimisation (signal MC & on-peak data GSB)
- Efficiency determination (signal MC)
- Extrapolate bkg GSB → SR: #bkg_{SR} (on-peak data GSB)
- Estimate #BB_{SR}
 (BB MC)
- Signal:

#SR-#bkg_{SR}-#BB_{SR}

Mirna van Hoek

Likelihood fit

 $B \rightarrow \pi \pi, K \pi, K K$

- Very important modes to constrain CKM angles α and γ
 - Time dependent asymmetry in B⁰ (B⁰) $\rightarrow \pi^+\pi^-$ measures sin(2 α_{eff})
 - In absence of penguins, $\alpha_{eff}=\alpha$
 - Unfortunately, penguins are *not* small
 - $B^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^0$: ~Pure Tree
 - $B^{_+} \rightarrow \pi^+ K^0$: ~Pure Penguin
 - $Br(B^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} K^0) > BR(B^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^0)$
 - Branching ratios constrain γ
- ML fit with $\Delta E,\ m_{ES},\ \mathcal{F}$ and Cherenkov angle
 - And Δt for sin(2 α_{eff})

Win02 Jan25 2002

$B \rightarrow \pi \pi, K \pi, K K$

Mode	N _S	S (σ)	<i>B</i> (10 ⁻⁶)
$\pi^+\pi^-$	41±10±7	4.7	4.1±1.0±0.7
$K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	169±17±13	15.8	16.7±1.6±1.3
K⁺K⁻	8.2 ^{+7.8} -6.4±3.5	1.3	<2.5 (90% C.L.)
$\pi^+\pi^0$	37±14±6	3.4	<9.6 (90% C.L.)
$K^{\scriptscriptstyle +}\pi^0$	75±14±7	8.0	10.8 ^{+2.1} -1.9±1.0
$K^0\pi^+$	59 ⁺¹¹ -10±6	9.8	18.2 ^{+3.3} -3.0±2.0
$K^{\mathrm{O}}\pi^{+}$	-4.1 ^{+4.5} -3.8±7		<2.4 (90% C.L.)
$K^{O} \pi^{O}$	17.9 ^{+6.8} -5.8±1.9	4.5	8.2 ^{+3.1} -2.7±1.2
K ₀ K ₀	3.4 ^{3.4} 2.4±3.5	1.5	<7.3 (90% C.L.)

Time dependent $\mathscr{Q}P$ in $\mathsf{B}^0 \rightarrow \pi^+\pi^-$

Decay distributions $f_+(f_-)$ when "other" B tagged as $B^0(\overline{B}^0)$

$B^0 \rightarrow \pi^+ \pi^-$ asymmetry result

- Measurement compatible with no P in B⁰ $\rightarrow \pi^+\pi^-$
- Statistically limited due to small branching fraction
- Need ~500fb⁻¹ for $\sigma(S_{\pi\pi}) \sim 0.10-0.15$

$B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

Mirna van Hoek

 $B \rightarrow K^{*0}\pi^+$

- Similar to $\rho\pi$
- Cut based analysis
- $K^{*0} \rightarrow K^{+}\pi^{-}$

 $Br(B^+ \to K^{*0}\pi^+) = (15.5 \pm 3.4 \pm 1.5) \times 10^{-6}$ (5.3 σ significance)

$B^{0} \rightarrow a_{0}^{\pm}(\eta(\gamma\gamma)\pi^{\pm})\pi^{\mp}$

- Goal: measure α
- Assumption: factorization
 - Main tree vanish (second class currents forbidden)
 - Possible enhancement direct CP violation

Mode	N _{Signal}	S (σ)	<i>B</i> (10 ⁻⁶)	(90%CL)	
ωK+	6.4 ^{+5.6} -4.4	1.3	1.4 ^{+1.3} -1.0±0.3	(<4)	_
ωK^0	8.1+4.6	3.2	6.4 ^{+3.6} -2.8 ±0.8	(<13)	
$\omega\pi^+$	27.6 ^{+8.8} -7.7	4.9	6.6 ^{+2.1} -1.8±0.7		← clear signal
$\omega\pi^0$	-0.9 ^{+.5.0} -3.2	_	-0.3±1.1±0.3	(<3)	

u,c,t \boldsymbol{B} $^{s}K^{(*)}$ • $b \rightarrow s(d) s\bar{s}$ (pure) penguins $ar{u},\,ar{d}$ $ar{u},\,ar{d}$ First observations Φ $\pi, K^{(*)}$ B W $ar{u},\,ar{d}$ $ar{m{u}},ar{m{d}}$ BABAR **B**A**B**AR events/(2 MeV/c²) events/(2 MeV/c²) $B(10^{-6})$ B^0 S (σ) Mode N_{Signal} 31.4+6.7 ϕK^+ 7.7^{+1.6}-1 4±0.8 10.5 10.8+4.1-3.3 ϕK^0 8.1^{+3.1}-2.5 ±0.8 6.4 ϕK^{*+} $9.7^{+4.2}_{-3.4}\pm1.7$ 4.5 $m_{\rm ES} \, ({\rm GeV/c}^2)$ 5.20 $m_{\rm ES} \, ({\rm GeV/c}^2)$ 5.30 ັ5.20 5.30 7.1+4.3 $\phi K^{*+}{}_{K^{+}\pi^{0}}$ $12.8^{+7.7}_{-6.1}\pm 3.2$ 2.7 4.4+2.7 $8.0^{+5.0}_{-3.7}\pm 1.3$ $\phi K^{*+}\,{}_{K}^{0}\pi^{+}$ 3.6 ϕK^0 : CP eigenstate \Rightarrow \bullet 20.8+5.9-5.1 8.7^{+2.5}-21±1.1 **Φ**K*0 7.5 can measure sin2β 0.9+2.1 < 1.4 (90% CL) 0.6 $\phi\pi^+$

Tree CKM suppressed

- Interference between Penguins $(g \rightarrow u\overline{u}(s\overline{s}))$
 - Enhance $B \rightarrow \eta' K$; $B \rightarrow \eta K^*$
 - Suppress B $\rightarrow \eta K$; B $\rightarrow \eta' K^*$

 $B \rightarrow \eta^{(\prime)} K^{(*)}$

• ML fit with $\Delta E, m_{EC}, \mathcal{F}, m_{res}, (\mathcal{H}, PID pulls)$

$B \rightarrow \eta^{(')} K^{(*)}$

η Κ:	Mode	N _{Signal}	S (σ)	<i>B</i> (10 ⁻⁶) (90%CL)
•Confirm Cleo				
•Larger than expected!	ηK*0	20.5±6.0	5.4	19.8 ^{+6.5} -5.6±1.7
•Possibly due to	ηΚ*+	14.3±6.6	3.2	22.1 ^{+11.1} -9.2 ±3.3 (<33.9)
• QCD anomaly:	$\eta'_{\eta\pi\pi}K^+$	49.5 ^{+8.1} -7.3	15	63 ⁺¹⁰ -95
gluon coupling	$\eta'_{\rho\gamma}K^+$	87.6 ^{+13.4} -12.5	11	80 ⁺¹² -11
τοη	η′K+		17	70 ±8± 5
•"Charming Penguins"	$\eta'_{\eta\pi\pi}K^0$	6.3 ^{+3.3} -2.5	4.7	28 ⁺¹⁵ -11
in loop	$\eta'_{\rho\gamma}K^0$	20.8 ^{+7.4} -6.5	4.2	61 ⁺²² -19
	$\eta' K^0$		5.9	42 ⁺¹³ -11±4
$\overline{u}, \overline{d}, \overline{s}^{\eta, \eta}$	$\eta'_{\eta\pi\pi}\pi^+$	5.7 ^{+3.8} -2.8	3.2	7.1 ^{+4.8} -3.5
$h \rightarrow c \rightarrow s$	$\eta'_{\rho\gamma}\pi^+$	-0.9 ^{+7.8} -6.2	0.1	-0.7 ^{+6.7} 5.3
$B^- W^- K^{-}, K^{*-}$	η'π+		2.8	5.4 ^{+3.5} _{-2.6} ±0.8 (<12)
u u				

Semi-exclusive $B \rightarrow \eta X_S$

- b \rightarrow sg measurements \rightarrow direct CP violation
- High rate first observed in Cleo
 - Interpreted as due to "QCD anomaly"
 - η^\prime coupling to 2 gluons

Summary of direct CP asymmetries

Summary and Outlook

- Large data sample (Run1: ~23 million BB pairs)
 - Sensitive to Br down to few x10⁻⁶
 - ~30 modes analyzed -- 18 with clear signals
 - No evidence (yet) for direct CP violation (σ down to ~8%)
- Important to understand:
 - Penguin/Tree contributions
 - Factorization hypothesis
 - Constraining (and measuring!) $\boldsymbol{\alpha}$
 - Measuring β in $B \rightarrow \phi K^0_S$
- Run2: until summer 2002: ~ 100 million BB pairs
 - More rare decays results + higher sensitivity
 - Stay tuned!!!