Electroweak Measurements at NuTeV: A Departure from Prediction

Mike Shaevitz Fermilab and Columbia University

for the NuTeV Collaboration

WIN2002 Conference Christchurch, New Zealand January, 2002

- Introduction to Electroweak Measurements
- NuTeV Experiment and Technique
- Experimental and Theoretical Simulation
- Data Sample and Checks
- Electroweak Fits
- Interpretations and Summary

Electroweak Theory

Standard Model

 $SU(2) \otimes U(1)$ gauge theory unifying weak/EM \Rightarrow weak Neutral Current interaction Measured physical parameters related to mixing

Measured physical parameters related to mixing parameter for the couplings, $g'=g \tan q_W$

$$e = g \sin q_W, G_F = \frac{g^2 \sqrt{2}}{8M_W^2}, \frac{M_W}{M_Z} = \cos q_W$$

Z Couplings	g_L	g_R
ν_e , ν_μ , ν_τ	1/2	0
<i>e</i> ,μ,τ	$-1/2 + \sin^2 \theta_W$	$sin^2 \theta_W$
<i>U</i> , <i>C</i> , <i>t</i>	$1/2 - 2/3 \sin^2 \theta_W$	$-2/3 \sin^2 \theta_W$
<i>d</i> , <i>s</i> , <i>b</i>	$-1/2 + 1/3 \sin^2 \theta_W$	$1/3 \sin^2 \theta_W$

• Neutrinos are special in SM

Only have left-handed weak interactions \Rightarrow W[±] and Z boson exchange

Neutral-Current

History of EW Measurements

Gargamelle	 Discovery of the Weak Neutral Current Summer 1973 (Gargamelle, CERN) SM predicted: ν_μN ® ν_μX
Gargamelle HPWF CIT-F	• First Generation EW Experiments Experiments in the late 1970's Precision at the 10% level Tested basic structure of SM \Rightarrow M _W ,M _Z
CCFR, CDHS CHARM, CHARM II UA1 , UA2 Petra , Tristan APV, SLAC eD	 Second Generation EW Experiments Experiments in the late 1980's Discovery of W,Z boson in 1982-83 Precision at the 1-5% level Radiative corrections become important First limits on the M_{top}
NuTeV D0 CDF LEP1 SLD LEPILAPV	 Third Generations Experiments Precision below 1% level Test consistency of SM

Search for new physics and

 \Rightarrow Predict light Higgs boson

(and possibly SUSY)

Constrain M_{Higgs}

LEPII APV SLAC-E158

3

Current Era of Precision EW Measurements

- Precision parameters define the SM:
- $\alpha_{EM}^{-1} = 137.03599959(40) 45ppb (200ppm@M_Z)$ $G_{\mu} = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2} 10ppm$ $M_Z = 91.1871(21) 23ppm$ • Comparisons test the SM $and probe for new physics <math>Z^0$ $M_Z = SM_Z^0$ $M_Z = SM_Z^0$
 - LEP/SLD CDF/D0 vN, APV

 Radiative corrections are large and sensitive to m_{top} and m_{Higgs}

Are There Cracks?

NuTeV Adds Another Arena

- Precision comparable to collider measurements of M_W
- Sensitive to different new physics

Different radiative corrections

- Measurement off the Z pole Exchange is not guaranteed to be a Z
- Measures neutrino neutral current coupling LEP 1 invisible line width is only other precise measure
- Sensitive to light quark (u,d) couplings Overlap with APV, Tevatron Z production
- Tests universality of EW theory over large range of momentum scales

Momentum Transfer (GeV^2)			
0.0001	1	30	10000
Atomic	SLAC	NuTeV	On-shell
Parity	e-D		W and Z bosons
Violation			

Toby vs. Godzilla

Neutrino EW Measurement Technique

For an isoscalar target composed of u,d quarks:

Llewellyn Smith Relation :

$$R^{n(\bar{n})} = \frac{\boldsymbol{S}_{NC}^{n(\bar{n})}}{\boldsymbol{S}_{CC}^{n(\bar{n})}} = \boldsymbol{r}^{2} \left(\frac{1}{2} - \sin^{2}\boldsymbol{q}_{W} + \frac{5}{9}\sin^{4}\boldsymbol{q}_{W}\left(1 + \frac{\boldsymbol{S}_{CC}^{\bar{n}(n)}}{\boldsymbol{S}_{CC}^{n(\bar{n})}}\right)\right)$$

 NC/CC ratio easiest to measure experimentally but ... Need to correct for non-isoscalar target, radiative corrections, heavy quark effects, higher twists
 Many SF dependencies and systematic uncertainties cancel
 Major theoretical uncertainty m_c **P** Suppress CC wrt NC

Charm Mass Effects

CC is suppressed due to final state c-quark

 \Rightarrow Need to know s-quark sea and m_c Modeled with leading-order slow-rescaling

$$x = \frac{Q^2}{2Mn} \rightarrow \mathbf{x} = \frac{(Q^2 + m_c^2)}{2Mn}$$

Measured by NuTeV/CCFR using dimuon events ($\nu N \rightarrow \mu cX \rightarrow \mu\mu X$) (*M. Goncharov et al., Phys. Rev. D64:* 112006,2001 and A.O. Bazarko et al., Z.Phys.C65:189-198,1995)

• vN experiments had hit a brick wall in precision \Rightarrow Due to systematic uncertainties (i.e. m_c )

$$\sin^2 \mathbf{q}_W^{on-shell} = 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$$
$$\Rightarrow M_W = 80.14 \pm 0.19 \, GeV$$

and to large $M_{top} > M_W$)

Cross section differences remove sea quark contributions \Rightarrow Reduce uncertainties from charm production and sea

Paschos - Wolfenstein Relation

$$R^{-} = \frac{\boldsymbol{s}_{NC}^{n} - \boldsymbol{s}_{NC}^{\bar{n}}}{\boldsymbol{s}_{CC}^{n} - \boldsymbol{s}_{CC}^{\bar{n}}} = \boldsymbol{r}^{2} \left(\frac{1}{2} + \sin^{2} \boldsymbol{q}_{W}\right) = \frac{R^{n} - rR^{\bar{n}}}{1 - r}$$

$$s(\mathbf{n}_{\mathbf{m}}d_{sea}) - s(\mathbf{\bar{n}}_{\mathbf{m}}\mathbf{\bar{d}}_{sea}) = 0 \implies \text{Only } d_{valence} \text{ contribute}$$

$$s(\mathbf{n}_{\mathbf{m}}\mathbf{\bar{u}}_{sea}) - s(\mathbf{\bar{n}}_{\mathbf{m}}u_{sea}) = 0 \implies \text{Only } u_{valence} \text{ contribute}$$

$$s(\mathbf{n}_{\mathbf{m}}s_{sea}) - s(\mathbf{\bar{n}}_{\mathbf{m}}\mathbf{\bar{s}}_{sea}) = 0 \implies \text{No strange} - sea \text{ contribution}$$

$$(Need to have xs(x) = x\overline{s}(x))$$

- R⁻ manifestly insensitive to sea quarks
 - Charm and strange sea error negligible
 - Charm production small since only enters from d_V quarks only which is Cabbibo suppressed and at high-x

Note: NuTeV measures R^n and $R^{\overline{n}}$ which, when used simultaneously, is equivalent to R^- .

But R⁻ requires separate v and v beams
 ⇒ NuTeV SSQT (Sign-selected Quad Train)

NuTeV Sign-Selected Beamline

- Beam is almost pure ν or ν

 (ν
 in ν mode 3×10⁻⁴, ν in ν
 mode 4×10⁻³)
- Beam only has ~1.6% electron neutrinos
 ⇒ Important background for isolating true NC event

NuTeV Lab E Neutrino Detector

Localize transverse

vertex

- Map toroid and calorimeter response

NuTeV Detector

Picture from 1998 - Detector is now dismantled

NuTeV Collaboration

G. P. Zeller⁵, T. Adams⁴, A. Alton⁴,
S. Avvakumov⁸, L. de Barbaro⁵, P. de Barbaro⁸, R. H. Bernstein³, A. Bodek⁸, T. Bolton⁴,
J. Brau⁶, D. Buchholz⁵, H. Budd⁸, L. Bugel³,
J. Conrad², R. B. Drucker⁶, B. T. Fleming², R. Frey⁶, J.A. Formaggio², J. Goldman⁴,
M. Goncharov⁴, D. A. Harris⁸, R. A. Johnson¹,
J. H. Kim², S. Koutsoliotas², M. J. Lamm³, W. Marsh³, D. Mason⁶, J. McDonald⁷,
K. S. McFarland^{8,3}, C. McNulty², D. Naples⁷,
P. Nienaber³, A. Romosan², W. K. Sakumoto⁸, H. Schellman⁵, M. H. Shaevitz²,
P. Spentzouris², E. G. Stern², N. Suwonjandee¹, M. Tzanov⁷, M. Vakili¹, A. Vaitaitis²,
U. K. Yang⁸, J. Yu³, and E. D. Zimmerman²

Cincinnati¹, Columbia², Fermilab³, Kansas State⁴, Northwestern⁵, Oregon⁶, Pittsburgh⁷, Rochester⁸ (Co-spokepersons: B.Bernstein, M.Shaevitz)

Neutral Current / Charged Current Event Separation

 Separate NC and CC events statistically based on the "event length" defined in terms of # counters traversed

NuTeV Data Sample

Determine R_{exp} : The Short to Long Ratio:

Use E_{had} dependent L_{cut} to minimize short CC correction

	Short (NC) Events	Long (CC) Events	R _{exp} =Short/Long
Neutrino	457K	1167K	0.3916 ± 0.0007
Antineutrino	101K	250K	0.4050± 0.0016

From R_{exp} to R^n

Need detailed Monte Carlo to relate \mathbf{R}_{exp} to $\mathbf{R}^{\mathbf{n}}$ and $\sin^2 \mathbf{q}_{W}$

- Cross Section Model LO pdfs (CCFR) Radiative corrections Isoscalar corrections Heavy quark corrections R_{Long} Higher twist corrections
- Detector Response CC ↔ NC cross-talk Beam contamination Muon simulation Calibrations Event vertex effects
- Neutrino Flux v_{μ} and v_{e} flux

Analysis goal is use **data** directly to set and check the Monte Carlo simulation

Background Corrections

Key Elements of Monte Carlo

- Parton Distribution Model Needed to correct for details of the PDF model Needed to model cross over from short v_{μ} CC events
- Neutrino fluxes

 $n_m, n_e, \overline{n}_m, \overline{n}_e$ in the two running modes Electron neutrino CC events always look short

- Shower Length Modeling
 Needed to correct for short events that look long
- Detector response vs energy, position, and time Test beam running throughout experiment crucial

Source	dR^n_{exp}	$dR_{exp}^{\overline{n}}$	Comments
Short CC Background	-0.068	-0.026	Check medium length events
Electron Neutrinos	-0.021	-0.024	Direct check from data
EM Radiative Correction	+0.0074	+0.0109	Well understood
Heavy m _c	-0.0052	-0.0117	R ⁻ technique
Cosmic-ray Background	-0.0036	-0.019	Direct from data
Compare to statistical error	±0.0013	±0.0027	

Top Five Largest Corrections

NC and CC quark model for n/\overline{n} cross - sections needs: $q(x,Q^2)$ and $\overline{q}(x,Q^2)$

- PDFs extracted from CCFR data exploiting symmetries: Isospin symmetry: u^p=dⁿ, d^p=u^u, and strange = anti-strange
- Data-driven: uncertainties come from measurements

- · LO quark-parton model tuned to agree with data:
 - Heavy quark production suppression and strange sea (CCFR/NuTeV $\nu N \rightarrow \mu^+\mu^- X$ data)
 - R_L, F₂ higher twist (from fits to SLAC, BCDMS)
 - d/u constraints from NMC, NUSEA(E866) data
 - Charm sea from EMC F_2^{cc}

This "tuning" of model is crucial for the analysis

- Use beam Monte Carlo simulation tuned to match the observed ν_{μ} spectrum

Tuning needed to correct for uncertainties in SSQT alignment and particle production at primary target

Simulation is very good but needs small tweaks at the ~0.3 –3% level for E_{π} , E_{K} , K/π

Charged-Current Control Sample

 Medium length events (L>30 cntrs) check modeling and simulation of Short charged-currents sample

Similar kinematics and hadronic energy distribution

 Good agreement between data and MC for the medium length events.

E_{Had} (GeV)

NuTeV Electron Neutrino Flux

 Approximately 5% of short events are v_e CC events Main v_e source is K[±] decay (93% / 70%) Others include K_{L,S} (4%/18%) reduced by SSQT and Charm (2%/9%)

Main uncertainty is K_{e3}^{\pm} branching ratio (known to 1.4%) !!

• But also have direct v_e measurement techniques.

Direct Measurments of v_e Flux

- 1. v_{μ}^{CC} (wrong-sign) events in antineutrino running constrain charm and K_L production
- 2. Shower shape analysis can statistically pick out v events ($80 < E_v < 180 \text{ GeV}$)

 $N_{meas} / N_{MC} : 1.05 \pm 0.03 (\mathbf{n}_{e})$ $1.01 \pm 0.04 (\mathbf{n}_{e})$

3. v_e from very short events ($E_v > 180$ GeV) Precise measurement of v_e in tail region of flux Observe ~35% more \overline{v}_e than predicted above 180 GeV, and a smaller excess in v beam Conclude that we should require $E_{had} < 180$ GeV

NuTeV preliminary result did not have this cut \mathbf{P} shifts $\sin^2 \mathbf{q}_W$ by +0.002

R_{exp} Stability Tests vs. Experimental Parameters

- Verify systematic uncertainties with data to Monte Carlo comparisons a function of exp. variables.
- Longitudinal Vertex: checks detector uniformity

Note: Shift from zero is because NuTeV result differs from Standard Model

Stability Tests (cont'd)

R_{exp} vs. length cut: Check NC ↔ CC separation syst.
 "16,17,18" L_{cut} is default: tighten ↔ loosen selection

Yellow band is stat error

 R_{exp} vs. radial bin: Check corrections for v_e and short CC which change with radius.

28

Stability Test: R_{exp} vs E_{Had}

 Short/Long Ratio vs E_{Had} checks stability of final measurement over full kinematic region

Checks almost everything: backgrounds, flux, detector modeling, cross section model,

Fit for $\sin^2\theta_W$

Simultaneous fit of R_{exp}^n and $R_{exp}^{\overline{n}}$ to two parameters:

 $\sin^2 \boldsymbol{q}_W$ and m_c

Also input $m_c = 1.38 \pm 0.14$ from *n* dimuon measurements

This fit is equivalent to using R^- in reducing systematic uncertainty Result :

$$\sin^2 \boldsymbol{q}_W^{(on-shell)} = 0.2277 \pm 0.0013(stat.) \pm 0.0009(syst.)$$
$$m_c = 1.32 \pm 0.09(stat.) \pm 0.06(syst.)$$

Can also do a two parameter fit to \boldsymbol{r} and $\sin^2 \boldsymbol{q}_W$:

$$\sin^{2} \boldsymbol{q}_{W}^{(on-shell)} = 0.2265 \pm 0.0031$$

$$\boldsymbol{r}_{0} = 0.9983 \pm 0.0040 \qquad (Correlation Coef. = 0.85) \qquad 30$$

- $\sin^2 q_W$ error statistically dominated $\Rightarrow R^-$ technique
- *Rⁿ* uncertainty dominated by theory model

SOURCE OF UNCERTAINTY	$\delta \sin^2 \theta_W$	$\delta R^{ u}_{ m exp}$	$\delta R^{\overline{ u}}_{ m exp}$
Data Statistics	0.00135	0.00069	0.00159
Monte Carlo Statistics	0.00010	0.00006	0.00010
TOTAL STATISTICS	0.00135	0.00069	0.00159
$ u_e, \overline{ u}_e$ Flux	0.00039	0.00025	0.00044
Interaction Vertex	0.00030	0.00022	0.00017
Shower Length Model	0.00027	0.00021	0.00020
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006
Energy Measurement	0.00018	0.00015	0.00024
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057
Charm Production, $s(x)$	0.00047	0.00089	0.00184
R_L	0.00032	0.00045	0.00101
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	0.00007	0.00026
Higher Twist	0.00014	0.00012	0.00013
Radiative Corrections	0.00011	0.00005	0.00006
Charm Sea	0.00010	0.00005	0.00004
Non-Isoscalar Target	0.00005	0.00004	0.00004
TOTAL MODEL	0.00064	0.00101	0.00212
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272

NuTeV Technique Gives Reduced Uncertainties

32

 $\sin^2 \boldsymbol{q}_{W}^{(on-shell)} = 0.2277 \pm \pm 0.0013(stat.) \pm 0.0009(syst.)$ $= 0.2277 \pm 0.0016$

- NuTeV result:
 - Error is statistics dominated
 - Is $\times 2.3$ more precise than previous vN experiments where $\sin^2\theta_{\rm W} = 0.2277 \pm 0.0036$ and syst. dominated
- Standard model fit (LEPEWWG): 0.2227 ± 0.00037 • A 3_o discrepancy

$R_{\rm exp}^n$	$= 0.3916 \pm 0.0013$	(<i>SM</i> : 0.3950)	$\Leftarrow 3s$ difference
$R_{\rm exp}^{\overline{n}}$	$= 0.4050 \pm 0.0027$	(<i>SM</i> : 0.4066)	\Leftarrow Good agreement

68%,90%,95%,99% C.L. Contours, Grid of SM $\pm 1\sigma$ mtop, m_{Hggs}

$$\sin^2 \boldsymbol{q}_W^{(on-shell)} \equiv 1 - \frac{M_W^2}{M_Z^2}$$

• Extract M_W from NuTeV sin² q_W value

 $M_W = 80.136 \pm 0.084 \; GeV$

QCD and electroweak radiative corrections are small Precision comparable to collider measurements but value is smaller

SM Global Fit with NuTeV $sin^2\theta_W$

Fall 2001				
	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3	
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	30		
m _z [GeV]	91.1875 ± 0.0021	.01		
Γ_{z} [GeV]	$\bf 2.4952 \pm 0.0023$	41	-	
σ ⁰ _{had} [nb]	$\textbf{41.540} \pm \textbf{0.037}$	1.63		
R _I	$\textbf{20.767} \pm \textbf{0.025}$	1.06		
A ^{0,1}	0.01714 ± 0.00095	.76		
$A_{i}(P_{\tau})$	0.1465 ± 0.0033	45	-	
R _b	0.21646 ± 0.00065	1.08		
R _c	0.1719 ± 0.0031	12		
A ^{0,b}	0.0990 ± 0.0017	-2.78		
A ^{0,c}	0.0685 ± 0.0034	-1.67	_	
A _b	$\textbf{0.922} \pm \textbf{0.020}$	64	-	
A _c	$\textbf{0.670} \pm \textbf{0.026}$.07		
A _I (SLD)	0.1513 ± 0.0021	1.61		
$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{fb})$	0.2324 ± 0.0012	.83	-	
m _w ^(LEP) [GeV] 80.450 ± 0.039	1.50		
m _t [GeV]	174.3 ± 5.1	14		
m _W ^(TEV) [GeV] 80.454 ± 0.060	1.04	_	
sin ² 0 _w (NuTe	v) 0.2277 ± 0.0016	2.98		
Q _w (Cs)	$\textbf{-72.50} \pm \textbf{0.70}$.56	-	
			-3 -2 -1 0 1 2 3	

(Courtesy M. Grunewald, LEPEWWG)

- Without NuTeV: χ^2 /dof = 21.5/14, probability of 9.0%
- With NuTeV: χ^2 /dof = 30.5/15, probability of 1.0% Upper m_{Higgs} limit weakens slightly 87 \rightarrow 91 GeV

Possible Interpretations

- Changes in Standard Model Fits Change PDF sets Change M_{Higgs}
- "Old Physics" Interpretations: QCD Violations of "isospin" symmetry Strange vs anti-strange quark asymmetry
- Are v's Different? Special couplings to new particles Majorana neutrino effects
- "New Physics" Interpretations
 New Z' or lepto-quark exchanges
 New particle loop corrections

Standard Model Fits to Quark Couplings $(g_L^{eff})^2$ and $(g_R^{eff})^2$

For an isoscalar target, the *nN* couplings are :

$$g_{L}^{2} = u_{L}^{2} + d_{L}^{2} = \mathbf{r}^{2} \left(\frac{1}{2} - \sin^{2} \mathbf{q}_{W} + \frac{5}{9} \sin^{4} \mathbf{q}_{W} \right)$$

$$g_{R}^{2} = u_{R}^{2} + d_{R}^{2} = \mathbf{r}^{2} \left(\frac{5}{9} \sin^{4} \mathbf{q}_{W} \right)$$
Two parameterfit to R_{\exp}^{n} and $R_{\exp}^{\overline{n}}$:
$$g_{L}^{2} = 0.3005 \pm 0.0014 \quad (SM : 0.3042) \quad \Leftarrow 2.6\mathbf{s} \text{ difference}$$

$$g_{R}^{2} = 0.0310 \pm 0.0011 \quad (SM : 0.0301) \quad \Leftarrow agreement$$

 Difficult to explain discrepancy with SM using: Parton distributions or LO vs NLO or Electroweak radiative corrections: heavy m_{Higgs} R^- technique could be sensitive to q/\overline{q} differences :

$$R^{-} = g_{L}^{2} - g_{R}^{2} + \frac{\int x dx \left\{ \left(u_{val}^{p} - d_{val}^{n} \right) - \left(d_{val}^{p} - u_{val}^{n} \right) + \left(c - \overline{c} \right) - \left(s - \overline{s} \right) \right\}}{\int x dx \left(u_{val}^{p} + d_{val}^{p} \right)} \times \left\{ 3 \left(g_{Lu}^{2} - g_{Ru}^{2} \right) + \left(g_{Ld}^{2} - g_{Rd}^{2} \right) \right\} + \dots$$

- Valence quark momentum fraction ∫ xdx (u^p_{val} + d^p_{val}) ≈ 0.18
 ⇒ ∫ xdx {(u^p_{val} dⁿ_{val}) (d^p_{val} uⁿ_{val}) + (c c) (s s)} ≈ -0.038
 could explain the NuTeV vs SM difference
- Isospin symmetry assumption: u^p=dⁿ and d^p=uⁿ Expect violations around (m_u-m_d)/Λ_{QCD} ≈ 1% ⇒ δsin²θ_W = 0.0004 Model dependent: Bag Models, Meson Cloud Models, ...

give small $\delta \sin^2 \theta_W$ of this order. (Thomas et al., PL A9 1799, Cao et al., PhysRev C62 015203)

- Strange vs anti-strange quark asymmetry $\Delta s = \int x dx (s \overline{s})$ The number of strange vs anti-strange needs to be the same but the momentum distributions could differ.
 - An asymmetry of $\Delta s = 0.002$ gives $\delta sin^2 \theta_W = 0.0026$
 - CCFR/NuTeV v-dimuons limit the size of Δs << 0.002 38 (M.. Goncharov et al., Phys. Rev. D64: 112006,2001)

- NuTeV result fit as a change in the n/\overline{n} coupling $\rightarrow r_0^2 = 0.9884 \pm 0.0026(stat.) \pm 0.0032(syst.)$
- LEP 1 measures Z lineshape and partial decay widths to infer the "number of neutrinos"

$$N_{\mathbf{n}} = 3 \frac{\Gamma_{\exp}(Z \to \mathbf{n}\overline{\mathbf{n}})}{\Gamma_{SM}(Z \to \mathbf{n}\overline{\mathbf{n}})} = 3 \times (0.9947 \pm 0.0028) \Leftarrow 1.9\mathbf{s} \text{ low}$$

- If neutrinos are Majorana, they may have different fundamental couplings from other particles to an extra U(1) type Z'
 - Majorana neutrinos could have zero charge wrt to extra U(1)
 - Can this explain why charged leptons are different from ν 's?

"New Physics" Interpretations

• Hard to accommodate entire NuTeV discrepancy.

Global fits somewhat better with E(6) Z' included Example: Erler and Langacker: SM $\Delta \chi^2 \approx 7.5$ m_{Z'}=600 GeV, mixing ~10⁻³, $\beta \approx 1.2$

"Almost sequential" Z' with opposite coupling

- NuTeV would want m_{Z'} ~1.2 TeV
- CDF/D0 Limits: m_{Z'} > 700 GeV

(Cho et al., Nucl.Phys.B531, 65.; Zeppenfeld and Cheung, hep-ph/9810277; Langacker et al., Rev.Mod.Phys.64,87; Davidson et al., hep-ph/0112302.)

Recent Summary of Possible Interpretations

- S.Davidson, S.Forte, P.Gambino, N.Rius, A. Strumia (hep-ph/0112302)
- QCD effects:
 - Small asymmetry in momentum carried by strange vs antistrange quarks ⇒ CCFR/NuTeV v dimuons limits
 - Small isospin violation in PDFs \Rightarrow expected to be small
- Propagator and coupling corrections to SM gauge bosons:
 - Small compared to effect
 - Hard to change only $\nu Z \nu$
- MSSM:
 - Loop corrections wrong sign and small compared to NuTeV
- Contact Interactions:
 - Left-handed quark-quark-lepton-lepton vertices, ϵ^{LL}_{vvqq} , with strength ~0.01 of the weak interaction \Rightarrow Look Tevatron Run II
- · Leptoquarks:
 - $SU(2)_L$ triplet with non-degenerate masses can fit NuTeV and evade π -decay constraints
- Extra U(1) vector bosons:
 - An unmixed Z' with B-3L_u symmetry can explain NuTeV
 - Mass: $600 \le M_{Z'} \le 5000 \text{ GeV}$ or $1 \le M_{Z'} \le 10 \text{ GeV}$
 - Light Z' may relate to:
 - GZK cutoff UHE cosmic-rays (vv→qq)
 - Source of heavy neutral leptons: NuTeV anomalous dimuon signal.

41

Summary

- NuTeV measurement has the precision to be important for SM electroweak test
- For NuTeV the SM predicts 0.2227 ± 0.0003 but we measure $\sin^2 q_W^{(on-shell)} = 0.2277 \pm 0.0013(stat.) \pm 0.0009(syst.)$ (Previous neutrino measurements gave 0.2277 ± 0.0036)
- In comparison to the Standard Model
 The NuTeV data prefers a lower effective.

The NuTeV data prefers a lower effective left-handed quark coupling

 The discrepancy with the Standard Model could be related to:

Quark model uncertainties but looks like only partially

and / or

Possibly new physics that is associated with neutrinos and interactions with left-handed quarks