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Why consider a Muon Collider

The current story suggests that there “has” to be something at or
approaching the TeV energy scale, but sooner or later we will
want a multi-TeV lepton machine for precision measurements of
SEWS (strongly interacting electroweak sector):

W'

® The mass of the muon (m /m, =207) gives a [ collider some very

desirable features:

= Less synchrotron (~m#), brem and init. state radiation =>
muons don’t radiate as readily as electrons:

» much smaller beam energy spread (Ap/p ~ 0.003%)

—» precise energy scans and hence precise mass and
width measurements

» easier to accelerate muons to higher energies
— multi-TeV collider is possible.

= Larger couplings to Higgs-like particles —» ifm, <

2m, possible to study Higgs boson production in the s-
channel
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A muon collider is compact...
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Muon Collaboration

® At least 2 generations of U collider would fit on FNAL
site =>> if feasible, could be significantly cheaper than
other futuristic HEP colliders.

Can be an upgrade to any other collider scheme.

Fermilab

LHC
| (14 TeV p—p)

VLHC
(60 TeV p—p)

NLC (0.5-1.0 TeV ete)

@ FMC (0.5 TeV ptpm)

(’\.— ™
-~ _/NMC

(4 TeV pu™)
10 Km |

... and a challenge

> Short lifetime

> Backgrounds:

U halo, p-—»ev v, , beamstrahlung, incoherent e
production, U pair production in EM showers (Bethe-

Heitler)
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——Jp need rapid acceleration
> Large PH init. | beam — need rapid beam cooling
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Muon Collider Schematic

® Challenge: capture & cool U’s by ~ 10° in 6D PS

® Result: collider, proton driver, intense U & v beams

1.5 x 1022
protons / year

\/

1.5x 1021
muons / year
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One possible muon collider. ..
500 GeV at Fermilab
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Physics
® Falls into 3 categories:

» Front end physics with a high intensity | source

» “First Muon Collider” (FMC) physics at c.o.m.
energies 100-500 GeV

» “Next Muon Collider” (NMC) physics at 3-4 TeV
c.0.m.

® Front End:

—> rare muon Processes
—> neutrino physics
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—> Mp collider > leptoquarks, lepton flavor dep.
—> stopped/slow intense 4 beam physics

® First UC: s-channel resonance & AE/E ~ 10-°
—> Higgs factory
—> Technicolor

—> Threshold cross sections:
W+Wr, tt, Zh, x+,x-,, X0, X0, SS: ', vy, ...
—> ZY%factory (using muon polarization)

® Next uC:

— High mass SS particles, Z’ resonances
— Ifno Higgs <1 TeV => Strong WW scattering

WIN 2002 why a muon collider? 6
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Other muon collider issues

® R: Gaussian spread in beam energy can be made very
small, but at cost of luminosity:

Some “conservative” calculations:
»/L ~(0.5,1,6) * 103lcm™ s°! for R = (0.003, 0.01, 0.1)% and
Vs ~ 100 GeV
> L ~(1,3,7) * 1032cm2 s'! for +/s = (200, 350, 400) GeV and
R~ 0.1%
So, UC best for: h —» p+u- AE, om! Evegm = 0-01R
HO and AO peak separation, Higgs scan
CP of Higgs bosons

Muon Collaboration

» Good measurement of h—> 1+1—- possible

® At FNAL unique opportunity for up collisions:
200 GeV | beams in collision with 1 TeV p beam:
> L ~1.3*%1022 cm™?sl, .s =894 GeV

® Neutrino Factory a natural intermediate step!

® Luminosity can be improved by further R & D in
emittance exchange, cooling, targetry.

May be the best for extreme energies

Can guarantee access to heavy SUSY particles, Z’ and strong
WW scattering if no Higgs Bosons and no SUSY

® Ifu’s and e’s are fundamentally different, a pC is
necessary!

WIN 2002 why a muon collider? /
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| Front End Physics

® Rare & stopped muon decays
» UW—>ey branching fract. < 0.49 * 10-12
» UWN—elN conversion
» M electric dipole moment

» SUSY GUTS theories: these lepton violating or
CP violating processes should occur via loops
at “significant” rates:

e.g. BF (W—>ey) 01013

® up collider
» Probe lepto-quarks up to mass M, ~ 800 GeV
» Maximum Q2 ~ 8 * 10* GeV? (90 X HERA)
» At FNAL: 200 GeV Ws on 1 TeV p’s
> Js =894 GeV, L=13fb1/year

WIN 2002 why a muon collider?
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Neutrino Factory

® Neutrinos from a muon storage ring (1 decay)
— For ~ 102! yw’s/year could get O(102°) v’s/year in
the straight section.
— Point straight section to desired direction

Arc length = straight length
25% of decays could be pointed

Arc length ~ 50m for 10 GeV, 200m for 100 GeV
(lattice calculation by C. Johnstone)

® Precisely known flavour content
U —> e'v &/ i 50% Ve (V7))
® Absolute flux (constrained kinematics, machine

parameters) oscillation detect
VP— = Ve ¢
vV, => Vv, T
Vo, => V7, 'y
Vo, =>V7, T
For example:

* P(v,—V,) =sin?268sin?(1.270m?L/E) => om? ~ 10
eV?/c? for sin?260=1 with ~1000 events/yr
® CP violation studies, neutrino masses, rare decays

WIN 2002 why a muon collider?
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Higgs
® Away from the s-channel pole, e and [ colliders have
similar capabilities for same /¢ and L

® Currently: L =50 fb!/year for e
L =10 fb!/year for u

n b (1)
~my ~my, (m,)

FIGURE 1. Feynman diagram for #S,h:mnel production of A Higgs boson.

101
1072

109 109.5 110 110.5 111

Vs (GeV)
FIGURE 2. The effective cress section, Tpa,,, for B = 0.01%, R = 0.06%, and R = 0.1% vs.

W8 for my,, = 110 GeV.

® Very large cross section at s-channel pole for m collider

® Small R is crucial for peaking.

° R \/E can be as small as

g =2MeV idth of SM-like Hi
0.003% 100Gey ot © Re HIBES
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Scanning

Exploiting R to Separate +°, A .

Separation of A% & H® by Scanning

My
L L - . R=0.01% _
60 ALHY ~ bb ,"f*'/ [T R-0.06% |
. )
mye=350 GeV |1 ,\ =0.5 ]
4 -
/f AT H

§ events/0.01 fb!
™
=
"-\._\_tu .
——
-4-"—'_.'
e, / g
o

gl
318

R<0.1

Precision measurement of m,y and m,_:

H A? discovery possibilities are limited at other machines,
(constrained at various values of m ,, and tanf3 )

If available, H, A0—># and H'H — tc,ct for A[g< 2 TeV

Some previous knowledge of m ,, can yield precise
measurements of H? and A for all tanf3 > 1-2.

)
1y 04

Muon Collaboration

Tevatron LHC eC nC
L,, (fob'h) 2 10 10 50 1 3 10 50
AmW(MeV)/C2 22-35 | 11-20 15 15-20 63 36 20 10
Am, (GeV)/c? 4 2 2 |012:02| 063 | 36 | 02 | 01
* At puC, small R => errors are always statistics dominated:
accurracy is ~ 2X better than at eC
* L, > 501tb-11is not useful for eC: errors are systematics
dominated.
WIN 2002 why a muon collider? 1
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More threshold production..

tt, h thresholds:

» such measurements are valuable for
determining as, 'ty |V, |2 as well as my
» Am, ~ 100MeV for m, ~ 115 GeV

Two channels (s and t)for light

chargmo produc’cion: For L =50 fb! R =0.1%

Muon Collaboration

N A MeV)  me. (GeV) g, [GeV)
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In the threshold regions, ¥;',¥, masses can be inferred from

the shape of the cross sections
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The ultimate SM probe

When 3ll the noble dreams disappear...

v

iy . Shenllwillie oliggreern S sorgg VO ermiieriieg.

® LHC or LC may yield first evidence of SEWS, but for
many models evidence may be of marginal statistical
significance.

® Several Models:
» SM with heavy Higgs boson my =1 TeV
» “scalar model with I=0, S=0 but non-SM width
» “vector” model with I=1, s=1 vector resonance
» SM Higgs of infinite mass

® Neither “light” Higgs nor SUSY exists!
> A~ (WW,—> W W) ~ syuw/V?

where, /SWW >1.5 TeV

» The nature of the dynamics here is unknown!
We’ll need all information possible

WIN 2002 why a muon collider? 13
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New stuff: lonization cooling

Ionization Cooling Transverse Cooling

Muons lose energy
by dE/dx and long—
dE dE dE itudinal momentum

dx dx dx replaced by r.1. “adim
r.f. r.f. r.f. r.f. '

cooling”

@® To Minimize heating from Coulomb Scattering:

@ Small 3, (strong focusing) :
High—field solenoids or Lithium Lenses

@ Large Li (low—Z absorber) : Liquid H,

Energy ""Cooling'

- Ionization cooling
. using a wedge plus
. dispersion.

. Exchanges emitt—

. ance between

: . transverse & long—
“6-dim. : itudinal directions

cooling” [

1) Sufficient for Neutrino Factory
2) Needed for Muon Collider

WIN 2002 why a muon collider? 14
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Risks: Cooling Channel Design

I ;\\1\ A
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Danger

® Testing the limits with new window design
Burst test for the LH2 absorber window:

® Rediscovering solenoidal focussing!

High gradient RF cavity within a solenoid —
reducing dark current is essential: plexiglass
windows demonstrate the destruction

.

BEFORE
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Fun

Pushing Technology:

Non-contact measurement e~ &= -
of strain by calculating i
dePlacemen’c e e

STROEBOSCOPLC —

PROJECTON THE SURFACE WILL BE 1511 Riverview Drive, Melboume, FL, USA 32901 www.geodelic.com info8geodelic.com Services
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Design of LINAC LH2 Abs Beam Test

3-8391cm [81.54"]
OUTLET PORTS (144 CMa[22.35 inal

R16.78cm [R6.617]

MAGNETIC CENTER; R0.8lcm [R0.32"]

LG-MAGNET F”J UHH

#H“ PH‘ ABSORBER FRONT

3-92.54cm [81.007]

MOTOR

R14.59cm [R5.74"]
INSIDE OF CHANNEL

®0.79cm [90.31"]

24 BOLT HOLES
R18.98cm [R7.47"1 THREADED (.312"-24)
OTSIDE OF CHANNEL

R20cm [R7.87°] j

ABSORBER BACK

He SUPPLY§

— HEAT EXCHANGER LN

CONNECTING NOZZLES ON HEAT EXCHANGER
TO MATCH WITH NOZZLES ON ABSORBER FRONT

View from the FNAL LINAC access -
Test beam site for MuCool
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Concluding remarks
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® Hadron colliders have traditionally been the “discovery”
machines, and the Tevatron and LHC at this time, may
be no exception.

® We don’t have enough information to make a decision
to commit to any ~ $10G machine at this time.

® We can’t build any proposed machine even if we got the
~ $10G at this time.

® Accelerator and detector R & D is needed for all major
proposed machines, and breakthroughs in any of them
help all of them.

® Muon colliders are the farthest reaching machines and
furthest away from being built at this time: both
statements support a strong R & D program.

® However, an early implementation of the pC, the v
factory, is a machine that technically and financially
could be feasible ~ next 10 years.

® Aggressive accelerator and detector R & D is the only
way we move from a “story” driven field to become a
data driven field.

® Muon collaboration is a strong group of accelerator and

particle physicists, reversing a > 40 year trend.

WIN 2002 why a muon collider? 19
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