

Why a muon collider? What will we learn?

Mary Anne Cummings

Northern Illinois Center for Accelerator and Detector Development Northern Illinois University

Why consider a Muon Collider?

• The current story suggests that there "has" to be something at or approaching the TeV energy scale, but sooner or later we will want a multi-TeV lepton machine for precision measurements of SEWS (strongly interacting electroweak sector):

- The mass of the muon $(m_{\mu}/m_e = 207)$ gives a μ collider some very desirable features:
 - \Rightarrow Less synchrotron (~m⁻⁴), brem and init. state radiation => muons don't radiate as readily as electrons:
 - > much smaller beam energy spread (∆p/p ~ 0.003%)
 → precise energy scans and hence precise mass and width measurements
 - easier to accelerate muons to higher energies
 multi-TeV collider is possible.
 - ⇒ Larger couplings to Higgs-like particles \longrightarrow if $m_h < 2m_W$, possible to study Higgs boson production in the schannel

A muon collider is compact...

- At least 2 generations of μ collider would fit on FNAL site =>> if feasible, could be significantly cheaper than other futuristic HEP colliders.
- Can be an upgrade to any other collider scheme.

... and a challenge

➢ Short lifetime → need rapid acceleration
 ➢ Large PH init. µ beam → need rapid beam cooling

Backgrounds:

μ halo, $\mu^- \rightarrow e^- v_\mu v_e$, beamstrahlung, incoherent *e* production, μ pair production in EM showers (Bethe-Heitler)

WIN 2002

Muon Collider Schematic

- Challenge: capture & cool μ 's by ~ 10⁵ in 6D PS
- Result: collider, proton driver, intense μ & ν beams

One possible muon collider... 500 GeV at Fermilab

PHOTO DATE: OCTOBER 1997

Physics

- Falls into 3 categories:
 - > **Front end** physics with a high intensity μ source
 - "First Muon Collider" (FMC) physics at c.o.m. energies 100-500 GeV
 - * "Next Muon Collider" (NMC) physics at 3-4 TeV c.o.m.

• Front End:

- \Rightarrow rare muon processes
- \Rightarrow neutrino physics
- \Rightarrow µ*p* collider > leptoquarks, lepton flavor dep.
- \Rightarrow stopped/slow intense μ beam physics
- First μ C: s-channel resonance & Δ E/E ~ 10⁻⁶
 - \Rightarrow Higgs factory
 - \Rightarrow Technicolor
 - \Rightarrow Threshold cross sections:
 - W^+W^- , tt, Zh, $\chi^+_1\chi^-_1$, $\chi^0_1\chi^0_1$ SS: l^+l^- , vv, ...
 - \Rightarrow Z⁰ factory (using muon polarization)

• Next µC:

- \Rightarrow High mass SS particles, Z' resonances
- \Rightarrow If no Higgs < 1 TeV => Strong WW scattering

Other muon collider issues

• **R**: Gaussian spread in beam energy can be made very small, but at cost of luminosity:

Some "conservative" calculations:
∠ ~ (0.5,1,6) * 10³¹cm⁻² s⁻¹ for R = (0.003, 0.01, 0.1)% and √s ~ 100 GeV
∠ ~ (1,3,7) * 10³²cm⁻² s⁻¹ for √s = (200, 350, 400) GeV and R ~ 0.1%

So, μ C best for: $h \rightarrow \mu + \mu - \Delta E_{beam} / E_{beam} = 0.01R$ H0 and A0 peak separation, Higgs scan CP of Higgs bosons

Sood measurement of $h \rightarrow \tau + \tau - possible$

- Neutrino Factory a natural intermediate step!
- Luminosity can be improved by further R & D in emittance exchange, cooling, targetry. May be the best for extreme energies Can guarantee access to heavy SUSY particles, Z' and strong WW scattering if no Higgs Bosons and no SUSY
- If μ's and e's are fundamentally different, a μC is necessary!

Front End Physics

- Rare & stopped muon decays
 - $\rightarrow \mu \longrightarrow e \gamma$ branching fract. < 0.49 * 10⁻¹²
 - $\rightarrow \mu N \longrightarrow eN$ conversion
 - \succ µ electric dipole moment
 - SUSY GUTS theories: these lepton violating or CP violating processes should occur via loops at "significant" rates:

e.g. BF ($\mu \rightarrow e\gamma$) ~ 10⁻¹³

• µp collider

- Probe lepto-quarks up to mass M_{LQ} ~ 800 GeV
- > Maximum $Q^2 \sim 8 * 10^4 \text{ GeV}^2$ (90 X HERA)
- > At FNAL: 200 GeV μ 's on 1 TeV *p*'s

 $\succ \sqrt{s} = 894 \text{ GeV}, \quad L = 13 \text{ fb}^{-1}/\text{year}$

Neutrino Factory

- Neutrinos from a muon storage ring (μ decay)
 - ⇒ For ~ $10^{21} \mu$'s/year could get $O(10^{20})$ v's/year in the straight section.
 - \Rightarrow Point straight section to desired direction

Arc length = straight length 25% of decays could be pointed

Arc length ~ 50m for 10 GeV, 200m for 100 GeV (lattice calculation by C. Johnstone)

- Precisely known flavour content $\mu^+ \longrightarrow e^+ \nu_e \nu_{\mu}^-, 50\% \nu_e (\nu_{\mu}^-)$
- Absolute flux (constrained kinematics, machine parameters)

<u>oscillation</u>	detect
$v_{\mu} \Rightarrow v_{e}$	e-
$v_{\mu} \Rightarrow v_{\tau}$	$ au^-$
$v_e^- \Rightarrow v_\mu^-$	μ^+
$v_e^- => v_\tau^-$	$ au^+$

For example:

- $P(v_a \rightarrow v_b) = \sin^2 2\theta \sin^2 (1.27 \, \delta m^2 L/E) \implies \delta m^2 \sim 10^{-5}$ eV^2/c^2 for $\sin^2 2\theta = 1$ with ~1000 events/yr
- CP violation studies, neutrino masses, rare decays

Higgs

- Away from the *s*-channel pole, *e* and μ colliders have similar capabilities for same \sqrt{s} and \mathcal{L}
- Currently: $L = 50 \text{ fb}^{-1}/\text{year for } e$ $L = 10 \text{ fb}^{-1}/\text{year for } \mu$

- Very large cross section at s-channel pole for m collider
- Small R is crucial for peaking.

$$\sigma \approx 2MeV \frac{R}{0.003\%} \frac{\sqrt{s}}{100GeV}$$

can be as small as width of SM-like Higgs

WIN 2002

fact

Scanning

Exploiting R to Separate H^0 , A^0 :

R< 0.1

- H^0 , A^0 discovery possibilities are limited at other machines, (constrained at various values of m_{A0} and $\tan\beta$)
- If available, H^0 , $A0 \rightarrow tt$ and $H^+H^- \rightarrow tc, ct$ for $\sqrt{s} < 2 \text{ TeV}$
- Some previous knowledge of m_{A0} can yield precise measurements of H⁰ and A⁰ for all tan $\beta > 1-2$.

Precision measurement of m_W and m_{t_i} :

	Tevat	ron	LHC	eC		μ	С	
L_{tot} (fb ⁻¹)	2	10	10	50	1	3	10	50
$\Delta m_W ({\rm MeV})/{\rm c}^2$	22-35	11-20	15	15-20	63	36	20	10
$\Delta m_t ({\rm GeV})/{\rm c}^2$	4	2	2	0.12-0.2	0.63	.36	0.2	0.1

• At μ C, small R => errors are always statistics dominated: accurracy is ~ 2X better than at *e*C

• $L_{tot} > 50$ fb-1 is not useful for *e*C: errors are systematics dominated.

More threshold production ..

tt, h thresholds:

- > such measurements are valuable for determining as, Γ^{tot}_{t} , $|V_{tb}|^2$ as well as m_t
- > $\Delta m_{\rm h} \sim 100 {\rm MeV}$ for $m_{\rm h} \sim 115 {\rm GeV}$

Two channels (s and t)for light chargino production:

Forl	_ =	50	fb-1,	R =	0.1%:

$\Delta m_{\tilde{\chi}_{0}^{+}}~({\rm MeV})$	$m_{\tilde{\chi}_{0}^{+}}~({\rm GeV})$	$m_{\widetilde{\nu}\mu}~({\rm GeV})$
35	100	500
45	100	300
150	200	500
300	2.00	300

In the threshold regions, $\widetilde{\chi}_1^+, \widetilde{\nu}_\mu$ masses can be inferred from the shape of the cross sections

The ultimate SM probe

When all the noble dreams disappear...

Figure 1. Symbolic diagram for strong $\nabla \nabla$ scattering.

- LHC or LC may yield first evidence of SEWS, but for many models evidence may be of marginal statistical significance.
- Several Models:
 - > SM with heavy Higgs boson $m_H = 1$ TeV
 - "scalar model with I=0, S=0 but non-SM width
 - "vector" model with I=1, s=1 vector resonance
 - SM Higgs of infinite mass
- Neither "light" Higgs nor SUSY exists!
 - ► A ~ $(W_L W_L \longrightarrow W_L W_L)$ ~ s_{WW}/v^2 where $\sqrt{s_{WW}} \ge 1.5$ TeV
 - The nature of the dynamics here is unknown! We'll need all information possible

New stuff: Ionization cooling

Sufficient for Neutrino Factory
 Needed for Muon Collider

Risks: Cooling Channel Design

DOUBLE FIELD FLIP CHANNEL

Shown here, a cooling cell with LH₂ Absorbers, RF cavities and Solenoid Magnet

Danger

• Testing the limits with new window design Burst test for the LH2 absorber window:

• Rediscovering solenoidal focussing!

High gradient RF cavity within a solenoid – reducing dark current is essential: plexiglass windows demonstrate the destruction

Fun

Pushing Technology: Non-contact measurement of strain by calculating displacement

WINDOW PRESSURE TEST SETUP W/ ITS INSTRUMENTATION

EL Black IIT II/15/2000 Ch. Dorve Neu 4/20/01

WIN 2002

Design of LINAC LH2 Abs Beam Test

View from the FNAL LINAC access -Test beam site for MuCool

Concluding remarks

- Hadron colliders have traditionally been the "discovery" machines, and the Tevatron and LHC at this time, may be no exception.
- We don't have enough information to make a decision to commit to any ~ \$10G machine at this time.
- We can't build any proposed machine even if we got the ~ \$10G at this time.
- Accelerator and detector R & D is needed for all major proposed machines, and breakthroughs in any of them help all of them.
- Muon colliders are the farthest reaching machines and furthest away from being built at this time: both statements support a strong R & D program.
- However, an early implementation of the μC, the ν factory, is a machine that technically and financially could be feasible ~ next 10 years.
- Aggressive accelerator and detector R & D is the only way we move from a "story" driven field to become a data driven field.
- Muon collaboration is a strong group of accelerator and particle physicists, reversing a > 40 year trend.
 WIN 2002 why a muon collider?