Prospects for Higgs at LHC

L. Poggioli, LAPP, Annecy, France

Standard Model Higgs
MSSM Higgs
Measurements
LHC

✓ Machine
 - Final design for dipoles
 - Pre-series OK

✓ Current schedule
 - 04/2006 (pilot run)
 - 08/2006-03/2007 $10 fb^{-1}$
 - -> 2008 $30 fb^{-1}/year/expt$
 - Then $100 fb^{-1}$ 100 fb^{-1}/yr

✓ Few months potential delay
 - Magnets procurements
Detectors (1)

✓ ATLAS and CMS

- Optimized for low mass Higgs
 - Small & narrow signals, large backgrounds
- Signatures: γ, $e/\mu/\tau$, E_T^{miss}, SUSY, t, jets
- Experimental effects
 - Efficiencies, background rejection, particle ID, resolution, non-gaussian response
 - fully simulated (GEANT)
 - Checked with test beam when possible
Detectors (2)

- CMS HCAL
- CMS magnet system
- ATLAS barrel cryostat
- ATLAS EM
- LARG calorimeter
Approach

✓ Results

- Processes simulation (signal, backgrounds)
 - No K-factor ($\sigma_{LO}/\sigma_{NLO} \sim 1.1 - 1.9$) - conservative
- No “hopeless” channels (multijets…, WH)
- Redundancy
- Discovery: $5\sigma (S/\sqrt{B})$ per expt / channel
 - When background poorly known
 - control tools (side-bands, jet veto)
 - systematics on background included

- Simple analyzes (simple cuts)
 - Neural Nets less reliable if bkgd poorly known
SM Higgs (1)

✓ **Production**
 - **Direct**
 - Via gg dominant
 - Via VBF qqH
 - ~ 20% gg
 - 2 quarks @ large η
 - **Associated**
 - $t\bar{t}H$, WH, ZH
 - $m_H < 200$ GeV
 - ~ 1-10% gg
SM Higgs (2)

✓ Final state

- $m_H < 2m_Z$
 - $ttH \rightarrow lbb+X$
 - $H \rightarrow \gamma\gamma$ (direct & associated)
 - $H \rightarrow ZZ^* \rightarrow 4l$
 - $H \rightarrow WW^* \rightarrow l\nu l\nu$

- $m_H > 2m_Z$
 - $H \rightarrow ZZ \rightarrow 4l$
 - $qqH \rightarrow ZZ \rightarrow l\nu l\nu$
 - $qqH \rightarrow WW \rightarrow l\nu jj$

with forward jets
SM Higgs (3)

- All channels together

- 80 - 1 TeV region covered

- \(m_H < 180 \text{ GeV} \): many complementary channels (\(\gamma\gamma, \text{bb}, 2l, 3l, 4l \))

- \(m_H > 180 \text{ GeV} \): easy with \(H \rightarrow ZZ \rightarrow 4l \)

- Not included yet: VBF channels at low mass
SM Higgs (4)

- **Sensitivity**

 - **ATLAS + CMS**
 - All region excluded @ 95% CL after 1 month
 - Discovery with 10fb^{-1} (~2007) for $m_H < 150$ GeV
 - Faster for $m_H > 150$ GeV
 - Conservative results (e.g. $WH \rightarrow Wbb$ not included)

- **For $m_H < 150$ GeV**
 - $\gamma\gamma$, bb dominant

- **NEW** $qq \rightarrow qqH \rightarrow qq\tau\tau, qqWW$ under study
SM Higgs(5)

✓ H → bb via ttH (WH, ZH difficult)

• Complex final state: 4b, 2 jets
• Bckd reduced by 2 tops reconstruction
• b-tagging essential
• Δ(m_{bb}) ~ 15%
• Complementary to γγ

• Crucial: bckd knowledge (60% ttbb), with ttjj
• 5σ → 130 GeV if bckd known
• 5σ → 120 GeV if 5% systematics on bckd

H → bb (low lumi)
ε_b ~ 60%, R(uds) ~100

ATLAS+CMS
30fb^{-1} S=80 B=320
SM Higgs (6)

✓ $H \rightarrow bb$ via ttH (cont’d)

- CMS study
- Use **likelihood** for t decays & event kinematics
- Use COMPHEP for $ttjj$

✓ $H \rightarrow \gamma\gamma$

- Direct & associated (ttH, WH)
- Well assessed
- Background
 - dominant: $\gamma\gamma$ - well measured from side bands

CMS 30fb^{-1}
- $S=38$ $B=52$

CMS 100fb^{-1}
- $K=1.6$, $S/B \sim 4\%$
SM Higgs VBF (1)

Motivation (D. Zeppenfeld et al.)
- Extra potential for discovery
- Access to couplings ($H\tau\tau$), Γ_H
- Invisible Higgs

- 2 forward jets
 - Well assessed for $m_H > 400$ GeV

Forward jet tagging
- Efficiencies critically important
- Assessed with full simulation

- Double tag efficiency ~ 50%
- Fake tag < 1% @ 10^{34}
SM Higgs VBF (2)

✓ $qqH \rightarrow qqWW \rightarrow qq l\nu l\nu$
 - Backds: tt, WW cont.
 - p_T(tot) cut & jet veto

\[
\begin{array}{c|cccc}
 m_H (GeV) & 130 & 150 & 170 & 190 \\
 \hline
 S & 10 & 30 & 55 & 40 \\
 S/B & 0.3 & 0.9 & 1.5 & 1.1 \\
 S/\sqrt{B} & 1.4 & 5.0 & 8.8 & 6.3 \\
\end{array}
\]

- Counting expt @ low mass
 - 5% systematics included in B
- Results worse than @ particle level
 - ISR/FSR, jet calibration, efficiencies

ATLAS, $e\mu$, 10 fb$^{-1}$
\[m_H = 160 \text{ GeV}\]

\[m_T = \sqrt{2p_T^{\ell}\ E_T^{\text{miss}} (1 - \cos \Delta\phi)}\]
SM Higgs VBF (3)

✓ $qqH \rightarrow qq\,\tau\tau \rightarrow qq\,l\nu\nu\,l\nu\nu$

- Similar to WW
- τ reconstruction using collinear approximation

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>115</th>
<th>120</th>
<th>130</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/\sqrt{B} 10fb$^{-1}$</td>
<td>2.6</td>
<td>2.6</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>S/\sqrt{B} 30fb$^{-1}$</td>
<td>4.3</td>
<td>4.3</td>
<td>3.8</td>
<td>2.7</td>
</tr>
</tbody>
</table>

- Systematics to be included
- (l, had) mode under study
SM Higgs VBF (4)

✅ qqH → qq **Invisible** (Preliminary)

- **Bckds:** QCD jj, Wjj, Zjj
- **Cuts**
 - Lepton & jet veto
 - $\phi_{jj} < 1$
 - **Isolation** cut kills QCD bckd: $\Delta(\phi(p_T^{\text{miss}}) - \phi(j_1,j_2)) > 1$

- **Counting expt**
 - Zjj, Wjj to be known to few %
 - Zjj can be normalized using lljj
- **Trigger:** Rates OK, under study

ATLAS after isolation & ϕ_{jj} cuts

- Signal
- QCDjj
- Wjj
- Zjj
MSSM Higgs (1)

- Large variety of observation modes
 - **SM-like**: \(h \rightarrow \gamma\gamma, \ bb \ ; \ H \rightarrow 4l \)
 - **MSSM-specific**: \(A/H \rightarrow \mu\mu, \tau\tau, \tt \ ; \ H \rightarrow hh, A \rightarrow Zh ; H^\pm \rightarrow \tau\nu \)
 - **If SUSY accessible**: \(H/A \rightarrow \chi^0_0 \chi^0_0, \chi^0_0 \rightarrow h \chi^1_0 \)

- **Study in 2 steps**
 - SUSY does not contribute
 - SUSY contributes in production/decays
 - Impact on Higgs decay to SM particles is small
 - \(h \rightarrow \gamma\gamma \) 10% smaller, \(A/H \rightarrow SM \) at most 40% smaller
MSSM Higgs (2)

✓ $A/H \rightarrow \tau\tau \rightarrow h^+\nu h^-\nu$
- Extends the range for large m_A wrt (l,h) mode
- Requests 2 stiff isolated tracks, p_T, 1 b-jet (bbA)
- Challenge: QCD bckd rejection (also for trigger)

✓ $gb \rightarrow t H^\pm, H^\pm \rightarrow \tau\nu$
- Extends the reach for lower $\tan\beta$ & m_A up to 500 GeV (compared to $H^\pm \rightarrow t b$)

CMS, 30 fb$^{-1}$
$m_A = 500$ GeV, with b-tag
MSSM Higgs (3)

All together

- Plane totally covered
- At very large $\tan \beta$, $m_h \sim 110$ GeV, h may not be seen
- If LEP excess from hZ, LHC will see h in any case, and A, H, H^\pm for moderate m_A & large $\tan \beta$

ATLAS + CMS

$30 \text{ fb}^{-1}; m_{\text{SUSY}} = 1 \text{ TeV}$

- 2 or more Higgs can be seen in a big plane fraction
- $bbh \rightarrow bb \mu\mu$ under study

Christchurch, NZ, 25/01/02

L. Poggioli - LAPP
MSSM Higgs (4)

SM versus MSSM

Here only SM-like h observable if no SUSY interplay

But region can be reduced with SLHC @ 10^{35} (5σ contours)
MSSM Higgs (5)

☑️ SUSY contribution

- Decay into SUSY particles ($m_A < 500$ GeV)

$$H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow l l \chi^1_0 \bar{\chi}^1_0$$

Region $m_A \sim 200-400$ GeV; $\tan \beta \sim 2-20$ covered

Reconstruction of m_A possible (end-point ll)
MSSM Higgs (6)

- Higgs in SUSY cascade \((m_A > 500 \text{ GeV})\)

\[\chi^2_0 \rightarrow h \chi^1_0, h \rightarrow bb \text{ (A/H too heavy)} \]

• Clear signal
• \(h \rightarrow bb\) but **without leptons**
 → no SM
• Covers a wide region
 \(m_A > 400-500 \text{ GeV}; \tan \beta > 5\)
 (no sensitivity in MSSM)
Measurements (1)

✓ **Higgs mass**

SM
- No theoretical error (mass shift for large Γ_H)
- Error dominated by absolute energy scale
 $\rightarrow 0.1\%$ for l/γ (using $Z \rightarrow ll$)
 $\rightarrow 1\%$ for jets

MSSM
- h as in SM
- $H/A \sim 0.1-0.5\%$ in modes $\gamma\gamma, 4l, \mu\mu$;
 $1-2\%$ in modes $bb, bb\gamma\gamma (hh), bbll (Zh)$
Mesurements (2)

\[\sigma \cdot BR \]

- Dominant errors: statistics, luminosity (5-10%), systematics on bckd (10%)
- Precision \(\sim 7-20\% \)

\[\tan \beta \]

\(\sigma(bbA/H) \) increases fast with \(\tan \beta \)

\[\Delta L/L = 10\% \]
Mesurements (3)

✓ Width

• Direct
 • Mass peak width for $m_H > 200$ GeV ($\Gamma_H > \Gamma_{\text{exp.}}$ in SM)
 • Limited by radiative decays (1.5%)
 • MSSM: possible for $A/H \to \mu\mu$

• Indirect (under study)
 • From rates of qqH in $\gamma\gamma$, $\tau\tau$, WW
 • Assume BR in cc, non-standard < 10%

✓ Higgs self-coupling (prel.)

- $SM\ HH \to WWWW \to l\nu\ jj\ l\nu\ jj$
 • expect $S \sim 30$, $S/B \sim 1$ for 600 fb$^{-1}$
- $MSMM\ H \to hh \to 4b$ final state
Measurements (4)

✓ Couplings & BR

- **Boson/Boson couplings**
 - **Direct**
 \[
 \frac{\sigma \times \text{BR}(H \rightarrow WW^*)}{\sigma \times \text{BR}(H \rightarrow ZZ^*)} = \frac{g_W}{g_Z} = \frac{\Gamma_W}{\Gamma_Z}
 \]
 - **QCD corrections cancel**
 - **Indirect**
 \[
 \frac{\sigma \times \text{BR}(H \rightarrow \gamma\gamma)}{\sigma \times \text{BR}(H \rightarrow ZZ^*)} = \frac{g_{\gamma\gamma}}{g_Z} \sim \frac{\Gamma_W}{\Gamma_Z}
 \]
 - Use proportionality between Γ_W and Γ_Z
 (theoretical input needed 10% assumed)

- **Boson/fermion couplings**

- **Errors are statistics dominated (~ 15-20%) → SLHC will help**
Prospects

- **SM Higgs**
 - Discovery over full mass range with 10 fb\(^{-1}\)
 - LHC/Tevatron competition in 2006-2007

- **MSSM**
 - Full coverage of the parameter space
 - Weak region recovered with SUSY/SLHC

- **Measurements & Theory constraints**
 - Masses, width, couplings (SLHC will help)
 - LHC/Tevatron complementarity

- **Ongoing efforts**
 - VBF, H spin, invisible Higgs, H self-coupling