Higgs Searches
at the Tevatron and LHC

John Womersley

DO Experiment Department
Fermi National Accelerator Laboratory, Batavia, Illinois

http://d0serverl.fnal.gov/projects/presentations/womersley/win02/win02.pdf

John Womersley

he



The Higgs Mechanism

e In the Standard Model mass = 80.4 GeV

— Electroweak symmetry breaking
occurs through introduction of a
scalar field > masses of W and Z

— Higgs field permeates space with
a finite vacuum expectation value = 246 GeV

— If ¢ also couples to fermions — generates fermion masses

e An appealing picture: is it correct?

— One clear and testable prediction: there exists a neutral scalar
particle which is an excitation of the Higgs field

— All its properties (production and decay rates, couplings) are fixed
except its own mass

Highest priority of worldwide high energy physics program: find it!
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Searching for the Higgs
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e Over the last decade, the focus has been on 6
experiments at the LEP ete~collider at CERN

— precision measurements of parameters
of the W and Z bosons, combined with
Fermilab’s top quark mass measurements, =
set an upper limit of my ~ 200 GeV

— direct searches for Higgs production exclude
my < 113 GeV
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e Summer and Autumn 2000: Hints of a Higgs? 10 m,, [1@09\:] 0
— the LEP data may be giving some indication of a Higgs with mass

115 GeV (right at the limit of sensitivity)

— despite these hints, CERN management decided to shut off LEP
operations in order to expedite construction of the LHC

0

“The resolution of this puzzle is now left to Fermilab's Tevatron and the LHC.”

— Luciano Maiani
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The Fermilab Tevatron Collider
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CDF installing silicon tracker, prior to detector roll-in
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Z - ete” candidates
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Run 131957 Event 4781549 Wed Nov 14 17:33:47 2001

Bins: 1097
Mean: 0.405
Rms: 2.88
Min: 0.00188
Max: 52.4

E_t: 0.0062
phi_t: 160deg

Y/ Et=179.24(
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Jets

DO
2-jet event

e EJ¢t ~230 GeV

« EJe2 ~190 GeV
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Jet cross section as a
function of E, for || < 0.5

R=0.7 Cone Algorithm
with Run 1 corrections
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Tracking

Help
Detect... »|«| x| Detector tree »|a| Event_tree

File Lights Clips Anims Viewpoints Misc Events

Cally

D@ Fiber Tracker
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Muons

CDF:
Z — ptu candidate

in muon system and COT
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Silicon Detectors and b-tagging

> ~—

—— 3 = s \ - -
TV A '\ 103[ B-lifetime
5 § ) ﬁ‘ g from
[ B—Jl/y
w0 events
o L Consistent
[ with world
average
RNl
03 -0.2 -0 o 0.1 0.; = Io.3
Tue Dec 1§ 332027 20048 pSEUdo_ct [cm]
[_mass Ks Ks chisq<10_| Chi2 / ndf = 77.15 1 68 .
Bkgl =4.148+0.6422 Ko© Slgnal
E Bkg2 =113213287
= Bkgd =-5.1010.7993
C Constant = 26.38 + 4.293 I
35F- Mean = 0.4865 % 0.003522 Silicon
c Sigma_= 0.02282 + 0003962
k- Stand-alone
aE tracking
20;
152—
10;
a——

he

John Womersley



Higgs at the Tevatron

e The search for the mechanism of EWSB motivated the supercolliders
(SSC and LHC)

o After the demise of the SSC, there was a resurgence of interest in
what was possible with a "mere” 2 TeV

— Ideas from within accelerator community ("TeV33")

— Stange, Marciano and Willenbrock paper 1994

— TeV2000 Workshop November 1994

— Snowmass 1996

— TeV33 committee report to Fermilab director

— Run II Higgs and Supersymmetry Workshop, November 1998

e Consensus resulted from a convergence of
— technical ideas about possible accelerator improvements

— clear physics motivation for integrated luminosities, before LHC
turn-on, much larger than the (then) approved 2fb-1
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Higgs decay modes

e The only unknown parameter of the SM Higgs sector is
the mass

e For any given Higgs mass, the production cross section
and decays are all calculable within the Standard Model

A Djouadl, J. Kallnowskl, M. Splra
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Higgs Production at the Tevatron

e Inclusive Higgs cross section is
quite high: ~ 1pb

— for masses below ~ 140 GeV, 107

the dominant decay mode H — bb

is swamped by background

— at higher masses, can use inclusive
production plus WW decays

a{pp— H + X} [pbl
10 E Vs =2 Tev

e The best bet below ~ 140 GeV appears
to be associated production of H plus
aWorZ

— leptonic decays of W/Z help give

the needed background rejection 10 0 S

I BT
140

— cross section ~ 0.2 pb ‘ T M, (GeV/c?)
H-> WW

1 1 1 |
160

180 200

Dominant decay mode
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my < 140 GeV: H - bb

e WH > qq’ bb is the dominant decay mode but is overwhelmed by QCD

background
e WH- 1ty bb
e ZH->1*1" bb
e ZH > vv bb

backgrounds W bb, WZ, tt, single top
backgrounds Z bb, ZZ, tt
backgrounds QCD, Z bb, ZZ, tt

— powerful but requires relatively soft missing E; trigger (~ 35 GeV)

my = 120 GeV

=
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b—tagged jet—jet mass (GeV)
2 x 15fb-1 (2 experiments)
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bb mass resolution
Directly influences signal significance
Z — bb will be a calibration

CDF PEELIMIMN AR Y

& E:cess over background
— Eaxpected MC shaps (FVTHIAY
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D@ simulation for 2fb-1
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Two b-jets from
Higgs decay

B,

John Womersley

Missing E;

EM cluster

Electron Track
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—— Hits in Silicon Tracker
(for b-tagging)

Calorimeter
Towers




Just for fun...
DO W + 2 jet (Higgs!) candidate, October 2001

Jet 1l
E,W = 17 GeV*
Electron
0y
% ~ @ Electron 30
4
o ET

Jet 2 0.0 37
E,™W = 13 GeV*

* Jet E; corrections will be large
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Example: m, = 115 GeV

o ~ 2fb1l/expt (2003): exclude at 95% CL Every factor of
e ~ 5fb1/expt (2004-5): evidence at 3c level two '“;:':I‘c::‘;s;z
e ~15 fb'1/expt (2007): expect a 56 Signal more physics

e Events in one experiment with 15 fb1;

Mode Signal Background S/+B
| vbb 92 450 4.3
vvbb 90 880 3.0
| 1 bb 10 44 1.5

o If we do see something, we will want to test whether it is really a
Higgs by measuring:
— production cross section
— Can we see H - WW? (Branching Ratio ~ 9% and rising w/ mass)
— Can we see H — tt? (Branching Ratio ~ 8% and falling w/ mass)
— Can we see H—- yy? (not detectable for SM Higgs at the Tevatron)
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Associated production tt + Higgs

e Cross section very low (few fb)
but signal:background good

e Major background is tt + jets
o Signal at the few event level:

15fb-! (one experiment)
----My= 120 GeV

- = My= 130 GeV

—_— ttbar + jets
==

n
"
u

0 20 40 60 80 100120 140 160 180 200 220
Mpp [GeV]

John Womersley

107

a{pp— H + X} [pbl
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my, > 140 GeV : H > WW(®)

gg > H > WW&) 5 1+1- vy

Backgrounds Drell-Yan, WW, WZ, 22, tt, tW, 1t
Initial signal:background ratio ~ 10-2

— Angular cuts to separate signal from “irreducible” WW background

- 250

o

= 18
Eoos E o) m(h®) = 170 Ge¥ 315 o b) m{h®) = 170 GeV 2 « 15fb-1
Wy E 1 s F - -
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M. = cluster transverse mass = \/ pr(Le) +m? (L) + K
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combined CDF /DO thresholds

Tevatron Higgs mass reach

3

k.

integroted luminosity /expt. (fb™)
=

0.20 :—
E‘ Q.15 }
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— 95% CL [mit 00s -
— Jo evidence
— 50 discovery

Q25— 1T T T

my probability
density, J. Erler

(hep-ph/0010153)
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No guarantee of success, but certainly a most enticing possibility
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Indirect Constraints on Higgs Mass

Future Tevatron W and top
mass measurements, per
experiment

Amy,
+27 MeV
+15 MeV

Am,
+2.7 GeV
+1.3 MeV

Impact on Higgs mass fit using
Amy, = 20 MeV, Am, = 1 GeV,
Ao = 1074, current central values
M. Grinewald et al., hep-ph/0111217

John Womersley
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Winter 2001
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Preliminary

102
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talk in the
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The Large Hadron Collider

Maln CERN 5|te

P—>*4—p'" ; ‘-".'

44 TeV' |
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Higgs at LHC
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e Production cross section and luminosity both
~ 10 times higher at LHC than at Tevatron

— Can use rarer decay modes of Higgs

John Womersley
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“Precision Channels”

Ho vy H-> ZZ*) 5 41
for my = 120 GeV, 100fb1, CMS for m; = 300 GeV, 10fb-1, ATLAS
~ 10000 ~ = ~
D ] L [i¥] =
= B = O 45 |-
S [ gfgr;af+ . S 400 e F
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s g & 200 O o4
6000 |~ 0 :
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200 400
my, (GeV)

e Both LHC detectors have invested heavily in precision EM calorimetry
and muon systems in order to exploit these channels
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Associated production ttH at LHC
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Vector boson fusion channels

o Use two forward jets to “tag” the VB fusion process
— Improves the S/B for large Higgs masses

R

q

WWW, 27 fusion

Two jets with E ~ 300 GeV and

2<|n| <4
q
q ~ /
e Example: H > WW — Ivjj
250 T T T T T TT ™T T4
R - 8 ! ! ! '3 Also useful
z r ATLAS S o7 1 my=120 GeV3
7200 'I' m,, = 600 ks M~ A :(')_I‘ lower
5 f 100fb- g 6 - 5 T'ggs masses:
A z 7 E
Hosp - + 5 /) = H
R — = - TT
- : . WW EW 3
+E 4 [ ] tt, WW "«E mH=120GeV
B 3 1 ATLAS
- F 2 At -
50 _— =
N 1 \ -
B ot 4 - =
(. | e :-:|.-.-f- T {]
J 0 500 1000 1500 80 100 120 140 160 180
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LHC Discovery Potential

Significance for 100 fb-1

T T T T T T T
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The whole range of SM Higgs masses is covered
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SM Higgs parameter determination at LHC
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Higgs coupling measurements

e Can measure various
ratios of Higgs
couplings and
branching fractions
by comparing rates

in different processes

e CMS estimates of
uncertainties with
300 fb1

Luminosity uncertainties
largely cancel in ratios

Errors are dominated by
statistics of the rarer
process

John Womersley

c*B (WH — )

o*B (WH — bb)

6B (H =)

5B (H — ZZ*)

o*B (ttH — yy/bb)

a*B (WH — yy/bb)

5B (H — WW*/W)

5B (H — ZZ*/Z)

BR(H— )

known to ~ 30%

BR (H — bb)

stat. limited
only for: 80 < my < 120 GeV

BR(H—v) known to ~ 15%

BR (H — ZZ*) stat. limited

only for: 125 < my < 155 GeV

94 known to ~ 25%
92— stat. limited
H WW
only for: 80 < my < 130 GeV
9% W known to ~ 30%
92— stat. (ZZ*) limited
HZZ

only for: 160 < my < 180 GeV
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Supersymmetric Higgs sector

e Expanded Higgs sector: h, H, A, H*

e Properties depend on
— At tree level, two free parameters (usually taken to be m,, tan p)
— Plus radiative corrections depending on sparticle masses and m,

Multiple Higgses

One of us looks
much like the
Standard Higgs...

he
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Supersymmetric Higgs Masses

hep-ph/0010338
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100 180 200 250 100 150 200 250 300 S 400 450 500
m, {GeV) m, (Gel)

Over much of the remaining
allowed parameter space,
m;, ~ 130 GeV,

m, ~ my ~ my, = “large”

From LEP:
m, > 91 GeV, m, > 92 GeV, my+ > 79 GeV, tanp > 2.4
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MSSM Higgs Decays

HDECAY (M =200 GeV, pn=-200 GV, M= 1TeV, A ~/6M_ .}
L T T L] T T
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e Very rich structure!
— For most of allowed mass range h behaves very much like Hgy

— WW and ZZ modes suppressed compared to SM
— bb and tt modes enhanced
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MSSM Higgs Decays
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SUSY Higgs Production at the Tevatron

bb(h/H/A) enhanced at large tan §:

q b N
/f‘ 0+g -
\\A

q p &

b

b

c ~ 1 pb for tanp = 30 and

m,, = 130 GeV

CDF Run 1 analysis (4 jets, 3 b tags)
sensitive to tan 3 > 60

2100
S 90
80

Preliminary |

—— Maoximal Stop Mixing —
Minimal Stop Mixing

T TR RN m\\_f

100 120 140 160 180 200 Z20 240
m, (GeV/c?)
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bb(h/A) —» 4b
0.1 fb™" 1 fb™" 2 fp™
140 5 fb™
. 10 fb™
100
. increasing
go - luminosity
/
60 -
40
i 95% CL
20 - Exclusion curves
Dlwclno' ' '2::30' ' '330'
2
e M, (GeV/c%)
m, =150 GeV,
tan p = 30 T
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SUSY Higgs reach at the Tevatron

95906 exclusion

95% CL Exclusion, Maximal Mixing Scenario

= s’ Hl 0!
o S e 2 e e o

5 fb-! E

959% exclusion
95% CL Exclusion, Suppressed V¢ -V bb
@ s’ W 0!

100 150 200 250 300 350 400
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5¢ discovery

50 Discovery, Maximal Mixing Scenario

1 15f? 0 20fb™ 30t
SO0y

45

aF

15 fb't 20 fb-! |

355

tan
i"nB8

20
15F

10F x

5P E

R P ST T T -

100 150 200 250 300 350 400
M, (GeV)

5¢ discovery
50 Discovery, Suppressed V¢ -V bb
1 15t 1 20" Bl 30"
LR R B e e B

20 fbt

Luminosity per experiment, CDF + D@ combined

John Womersley

Exclusion and discovery
for maximal stop mixing,
sparticle masses = 1 TeV

Most challenging scenario:
suppressed couplings to bb

Enhances h - yy ?
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SUSY Higgs production at the LHC

B H
3 tan B =3 tnp=3 3 tan =30
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e Cross sections at the 10 pb level and Tastanp T
e (H/A) bb especially enhanced at large tan p
e VB fusion suppressed
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SUSY Higgs discovery channels

e The best SM channel (H - ZZ(*)— 41) is suppressed
e Good bets:
- hoy
— h—> bb
— H/A—> 11
— Hf> v
e In certain regions of parameter space:
— H/A - pup
— H—> hh
— A—> Zh
- Ht>tb
e SUSY masses permitting
— H/A — neutralino pairs

— h production in SUSY
cascades 3%, - ¢%;h

John Womersley
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h discovery modes
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EJ_;_;-; = 40 GeV, f.?lr]' = 15 GeV,
Aoy < 1757, Efss = 20 GeV

140 Gel

Events for 3+10%pb—1

40 GeY

Events for 3+104pb—1
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b-tagging associated jets is a powerful way to pull out the signal
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pi’ > 60 GeV, ph > 10 GeV,
Aolji) < 1757, EF" = 40 GeV

Events for 3+ 104pb-1 /40 GaV
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Hf - tv

e For lower masses, search in top decays (t — t rate enhanced)
 For higher masses, associated production with top:
— pp - tHE> tov
 Signal is a peak in transverse mass of t jet and E;™iss

o tt background suppressed by jet veto and cut on mass
of 7, E/™ssand jet (= m, for t > bW*— btv)

t =+
a0 pp—tH H — v t—=qgb 30 pp—}tHi,Ht—} ™, t —qgb
?.3 m,, = 200 GaV, tan = 20 % m,, = 400 GaV, tanf = 30
9 g jet and top weto - o
[} [}
o ™
., 20 Total background . "
= et
S 15 - =
S Signal ~ &0 events k=]
@ 10 I
: 6 5 i
B
0 50 100 150 200 250 300 350 100 200 300
m, (1 jet, 5%} [Gay] m, (1 jet, E[5%) [GaV]
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Combined coverage

Discovery Channels

Number of Higgses visible
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Determination of parameters

e First question: do we have a SM H or a SUSY h?

— Note: often this will be moot at the LHC because squarks and
gluons will have been observed before any Higgs — but there is
always the possibility of more complicated Higgs sectors

o Second question: where are we in SUSY parameter space (or 2HDM
space?)
— Use masses, widths and branching ratios
— If more than one Higgs is observed, more straightforward
— Example of tan § determination from ATLAS TDR:

tan 3, my = 150 GeV tan 4, my = 300 GCVI
= it -1 = P i — 1
= a0l |Ldt= 300 fb . = 9ol a |Ldt = 300 fb
""‘? m, =150 GeV ""‘? fH$ZTV >4 leptans m, =300 GeV
= n H/AA—>Tr = r
= [ = N "
= % = : k
10| % 10k
g Y HAA—> e g [ Hfﬁ-)’TT.‘.‘.'
T ...'-..” T : l.""‘5“--
6 Ly 1] IR r, 6 L
X > /A=
H
4 4l s
1 1
1 10 1 10
tanf3 tanfi
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SUSY decay modes

o If we are lucky, beautiful signals may be observable

- e-g- (H/A) —> XOZXOZ —> 41

100 o™

Eveants / 15 Gaw
=

A H—> ¥ — 4 lept signal
) e

gekgraund (mainly SUST)

1] 1] ] Fol ] m 1 4

4-loptan effective mass (GaV)

Events / 15 Gaw

100 b

A, H—rxd— 4 lept signal
o

I background {mainly SUST)

a4 i # n -1 1) ] i

d-lapton effective mass (Gel)

— h > bb in cascade decays from squark and gluon production
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Complementarity of the Tevatron and LHC

e The Physics goals of the Tevatron and the LHC are not very different,
but the discovery reach of the LHC is hugely greater

— SM Higgs:

e Tevatron < 180 GeV LHC < 1 TeV
— SUSY (squark/gluino masses)

e Tevatron < 400-500 GeV LHC < 2 TeV

e For Standard Model physics, systematics may dominate:
— Top mass precision

e Tevatron ~ 2 GeV LHC ~ 1 GeV?
— m,, precision
e Tevatron ~ 20 MeV? LHC ~ 20 MeV?

Despite its limited reach, the Tevatron is interesting because
both Higgs and SUSY “ought to be” light and within reach
— and because of the timing

If the Tevatron and LHC are in a race, it is a relay race

he
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Where is SUSY?

Direct searches at LEP and the Tevatron all negative so far

e Typical minimal supergravity-inspired SUSY models are already

excluded at the 95% level
(e.g. Strumia, hep-ph/9904247)

Still allowed

1000 /
300 t

100

LEP limit
20

10

chatgine mazz in Qe

il 2
1 b
3 10 30 100 300 1000

hargino

nafuralness puobabilite

o Either we should expect to see something soon, or we (HEP) are on
the wrong track.. ..
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Tevatron plans for 2002

e Only ~ 20pb-! delivered so far, which CDF and D@ have used to
commission their detectors

e 2002 will be the year that serious physics running starts
e Laboratory plan for luminosity:

10 400 =
— @)
(= =
X 8 300 2
Z 6 e We anticipate first
a3 500 E physics results in
E 4 3 Summer* 2002
3 D
~ 9 - 100 = (*northern hemisphere)
O o
o )

0 0 5

Y & & & & &
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Run 2B

e Planning has started on the additional detector enhancements that
will be needed to meet the goal of accumulating 15 fb1 by end 2007

— major components are two new silicon detectors to replace the
present CDF and D@ devices which can not survive the radiation

dose
— Technical design reports submitted to the laboratory Oct 2001

— goal: installed and running by early 2005

Run 2B silicon installed

Proposed D@ Run 2B

silicon detector e
'
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(dipole procurement
now approved)

Magnet String Test

John Womersley

Underground construction at the

ATLAS cavern

_
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CMS hadron
calorimeter

John Womersley

LHC detector construction

N

ATLAS tile calorimeter

CMS 4T solenoid
inside muon iron
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LHC cost problems

e LHC cost review (9/01) concluded there is a 850M CHF cost overrun at
CERN (machine cost plus significant extra costs for detectors,
computing, etc.)

e Discussions in council
e Five internal task forces established
e Austerity measures already being taken:

— Cost cutting, reduction of scientific activity in 2002 (reduce
accelerator operating time by 25%)

— allow 33.5 MCHF to be reallocated to the LHC this year
e External review committee established, will examine:

— LHC accelerator, experimental areas and CERN's share of detector
construction

— CERN's scientific program not directly related to the LHC

— For the longer term, a series of internal Task Forces has been set
up to examine CERN's functioning, thereby allowing for a
meaningful analysis of savings.

e CERN’s commitment to the LHC is not in any way in doubt, but the
impact of all this on the start date for physics is not yet clear
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Conclusions

e In the current run at the Tevatron (2001-200x)
— We will discover the Higgs, if we are fortunate and clever
— If not, we will exclude a very interesting region
¢ including exclusion of much of SUSY space
e atthe LHC (200x—)
— We will discover the Higgs, pretty much no matter what
— We will measure it more precisely, in more decay modes
— We will explore more SUSY Higgs states
e and we will learn lots about SUSY from other searches

e For as long as I have done high energy physics, we have known that
we needed something like a Higgs, and it has been the highest
priority of the field to explore this question experimentally

e That is about to change dramatically: the next few years will see the
Higgs become a discovery or set of discoveries to be understood

— and, we hope, the first window on to a new domain of physics at
the EW scale
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