#### **A Place in the Sun for Neutrinos**

- Experimental inputs:
  - Rates from 7 experiments
  - Shape, D/N from Super-Kamiokande
  - The SNO experiment
- What we know from Solar Neutrinos
- The next steps
- Low-energy solar neutrinos
  - Physics goals
  - Experiments

Hamish Robertson, University of Washington WIN '02, Christchurch NZ Jan. 22, 02 1

Thursday

11:30 Colin Okada "What else can SNO do?"2:00 Junpai Shirai "KamLAND"2:40 Till Kirsten "Aims and Status of Borexino"

Friday

6:45 Tom Bowles "Low Energy Neutrino Spectroscopy (LENS)"

#### **CI-Ar at Homestake**



#### **CI - Ar Results 1970 - 1994**



### **The SAGE Experiment**



#### **The GNO and Gallex Experiments**



6

If your experiment needs better statistics, you need a better experiment.

Lord Rutherford

#### The Super-Kamiokande Light-Water Cherenkov Detector



#### Super-Kamiokande



#### **Energy spectrum**





## **v** Reactions in Heavy Water

cc 
$$\nu_e + d \Rightarrow p + p + e^{-1}$$
  
- "Charged Current"  
-  $\nu_e$  only.



- -"Neutral Current"
- Equal cross section for all active  $\boldsymbol{\nu}$  types



-"Elastic Scattering" -Mainly sensitive to  $\nu_{e,}$  , some sensitivity to  $\nu_{\mu}$  and  $\nu_{\tau}$ 



First results from the Sudbury Neutrino Observatory, and their Implications



#### **Aurora Australis**



#### **Sudbury Neutrino Observatory**



#### **SNO Collaboration**

S. Gil, J. Heise, R. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng,Y. Tserkovnyak, C.E. Waltham. **University of British Columbia** 

> J. Boger, R. L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory

I. Blevis, F. Dalnoki-Veress, W. Davidson, J. Farine, D.R. Grant, C. K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, T. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky Carleton University

T.C. Andersen, M.C. Chon, P. Jagam, J. Law, I.T. Lawson, R. W. Ollerhead, J. J. Simpson, N. Tagg, J.X. Wang University of Guelph

> R.G. Allen, G. Buhler, H.H. Chen\* University of California, Irvine

J. Bigu, J.H.M. Cowan, E. D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C. J. Virtue. Laurentian University

Y. D. Chan, X. Chen, M. C. P. Isaac, K. T. Lesko, A. D. Marino, E. B. Norman, C. E. Okada, A. W. P. Poon, A. R. Smith, A. Schülke, R. G. Stokstad. Lawrence Berkeley National Laboratory T. J. Bowles, S. J. Brice, M. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters. Los Alamos National Laboratory

J.C. Barton, S.Biller, R. Black, R. Boardman, M. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K.Frame, H. Heron, C. Howard, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCaulay, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R. Taplin, M. Thorman, P. Thornewell. P.T. Trent, D.L.Wark, N. West, J. Wilson **University of Oxford** 

E. W. Beier, D. F. Cowen, E. D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J. R. Klein, C.C.M. Kyba, D. S. McDonald, M.S.Neubauer, F.M. Newcomer, S. Oser, V. Rusu, R. Van Berg, R.G. Van de Water, P. Wittich. **University of Pennsylvania** 

E. Bonvin, M.G. Boulay, M. Chen, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. McDonald, W. McLatchie, B. Moffat, B.C. Robertson, P. Skensved, B. Sur. Queen's University

Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, P.J. Doe, C.A. Duba, S.R. Elliott, R. Fardon, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson. University of Washington

#### **The SNO Detector during Construction**







#### Heavy Water from Bruce Plant



#### **Signals in SNO**



#### Looking for unexpected Neutrino Flavors

Measure total flux of solar neutrinos vs. the pure  $v_e$  flux

Charged-Current to Neutral Current ratio is a direct signature for oscillations

$$\frac{CC}{NC} = \frac{V_{e}}{V_{e} + V_{\mu} + V_{\tau}}$$

CC/ES Could also show significant effects

$$\frac{CC}{ES} = \frac{v_e}{v_e + 0.15(v_\mu + v_\tau)}$$



#### Instrumental backgrounds



Note Neck Tubes Fired

## **Application of Instrumental Background Cuts**



#### **SNO Energy Calibrations**







#### **Direction of Events with respect to the Sun**



#### **Neutrino Flavor Composition of 8B Flux**



### **Charged Current Energy Spectrum**



CC spectrum normalized to predicted <sup>8</sup>B spectrum. no evidence for shape distortion.

#### **New Measurement of** $^{7}Be(p,\gamma)^{8}B$ Junghans et al. nucl-ex/0111014



#### **Neutrino Oscillations**



#### **Charged Current and Elastic Scattering Fluxes**





#### **Experimental Systematic Errors**

| Error Source                                                                                                           | CC Error (%)                  | ES Error (%)                  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| Energy Scale                                                                                                           | +6.1/-5.2                     | +5.4/-3.5                     |
| Energy Resolution                                                                                                      | ±0.5                          | ±0.3                          |
| Energy Scale Non-Linearity                                                                                             | ±0.5                          | ±0.4                          |
| Vertex Shift                                                                                                           | ±3.1                          | ±3.3                          |
| Vertex Resolution                                                                                                      | ±0.7                          | ±0.4                          |
| Angular Resolution                                                                                                     | ±0.5                          | ±2.2                          |
| Live Time                                                                                                              | ±0.1                          | ±0.1                          |
| Trigger Efficiency                                                                                                     | 0.0                           | 0.0                           |
| Cut Acceptance                                                                                                         | +0.7/-0.6                     | +0.7/-0.6                     |
| Earth orbit eccentricity                                                                                               | 0.0                           | 0.0                           |
| <sup>17</sup> O, <sup>18</sup> O                                                                                       | 0.0                           | 0.0                           |
| Residual Backgrounds (R <sub>fit</sub> ≤550 cm)<br>Instrumental Background<br>High Energy γ's<br>Low Energy Background | -0.2/+0.0<br>-0.3/+0.0<br>0.0 | -0.5/+0.0<br>-1.8/+0/0<br>0.0 |
| Experimental Uncertainty                                                                                               | +7.0/-6.2                     | +6.8/-5.7                     |
| Cross Section                                                                                                          | 3.0                           | 0.5                           |

CC (and NC) cross sections calculated with BCK Effective Field Theory. Counterterm  $L_{1,A}$  obtained by normalizing to NSGK Potential Model Radiative corrections not made, except for updates to  $g_A$ 

| <b>Calculation</b> | <b>g</b> <sub>A</sub> | <u>Ref</u>                          |
|--------------------|-----------------------|-------------------------------------|
| NSGK               | 1.254                 | Nakamura et al. PR C63 034617,      |
| BCK                | 1.26                  | Butler, Chen & Kwong, PR C63 035551 |
| SNO 2001           | 1.267                 | Beacom & Parke hep-ph/0106128       |

New, consistent treatment of radiative corrections by Kurylov, Ramsey-Musolf, and Vogel (nucl-th/0110051):

Total cross section increases by 3-4%. Threshold for soft  $\gamma$ s in SNO reduces this to 2%

- Evidence that  $\nu_e$  produced in the Sun are transformed to  $\nu_\mu$  and/or  $\nu_\tau$  -- solar neutrinos having a *flavor other than electron* are being detected on Earth
- First measurement of the total flux of <sup>8</sup>B neutrinos:  $\phi_{total}(^{8}B) = 5.44 \pm 0.99 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ Agrees well with solar models:  $\phi_{SSMI}(^{8}B) = 5.05 \pm 0.80 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$  (BPB01)
- Neutrino models with mixing solely to a sterile neutrino are not compatible with these data, but small additional sterile oscillation channel possible

# Allowed Solutions for 2-Neutrino Oscillations (Before)

Fogli et al. hep-ph/0106247; Bahcall et al. hep-ph/0106258



#### **SNO Allowed Solutions for 2-Neutrino Oscillations**









Best bet for MNSP Matrix:

$$\left(\begin{array}{c}\boldsymbol{\nu_e}\\\boldsymbol{\nu_\mu}\\\boldsymbol{\nu_\tau}\end{array}\right) = \left(\begin{array}{ccc}\boldsymbol{U_{e1}} & \boldsymbol{U_{e2}} & \boldsymbol{U_{e3}}\\\boldsymbol{U_{\mu 1}} & \boldsymbol{U_{\mu 2}} & \boldsymbol{U_{\mu 3}}\\\boldsymbol{U_{\tau 1}} & \boldsymbol{U_{\tau 2}} & \boldsymbol{U_{\tau 3}}\end{array}\right) \left(\begin{array}{c}\boldsymbol{\nu_1}\\\boldsymbol{\nu_2}\\\boldsymbol{\nu_3}\end{array}\right)$$

#### **Atmospheric**

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \times$$

#### Chooz

$$imes egin{pmatrix} & \sim 1 & 0 & e^{-i\delta_{CP}}\sin heta_{13} \ 0 & 1 & 0 \ -e^{i\delta_{CP}}\sin heta_{13} & 0 & \sim 1 \ \end{pmatrix} imes$$

LMA

$$\times \left(\begin{array}{rrrr} 0.85 & 0.51 & 0 \\ -0.51 & 0.85 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

#### A viable mass spectrum



$$v_e = 0.85v_1 + 0.51v_2$$
  

$$v_\mu = -0.36v_1 + 0.60v_2 + 0.71v_3$$
  

$$v_\tau = 0.36v_1 - 0.60v_2 + 0.71v_3$$

- Solar neutrino oscillations introduce a 50:50 admixture of  $\nu_{\mu}$  and  $\nu_{\tau}$  into the originally pure  $\nu_e$  state.

• All solar solutions matter-enhanced: we now know level order 1,2

# **Cosmological Implications**

 $|m_1^2 - m_2^2| < 10^{-3} eV^2$ SNO + CHOOZ: Limits on  $v_e$  mass:  $|U_{a_1}|^2 m_1^2 + |U_{a_2}|^2 m_2^2 < (2.8)^2 eV^2$  $\nu_{\mu} \Rightarrow \nu_{\tau}$  oscillations in atmospheric neutrinos:  $|m_2^2 - m_3^2| \approx 2.4 \times 10^{-3} \text{ eV}^2$  $\Sigma$  neutrino masses:  $0.05 < \sum_{123} \le 8.4 \text{ eV}$  $\rightarrow$  limit on v fraction of  $0.001 < \Omega_v < 0.18$ universe closure density:

#### The next steps...

- What are the values of  $\Delta m^2$ ,  $U_{ij}$ ?
- What is the level ordering?
- What are the masses?
- Is U<sub>e3</sub> = 0?
- How big is CP violation for neutrinos?
- Is U 3-dimensional? 4? 6? ∞?
   or, is the 3-D version unitary?
- Do neutrinos and antineutrinos mix?



#### **Signals in SNO**



#### **Time dependence of energy calibration**







Day(733 days): 2.32±0.03+0.08-0.07
 Night(763 days): 2.37±0.03±0.08
 (N-D)/((N+D)/2): 0.021±0.020+0.013-0.012



### **Day-night exposure at SNO**





## **Day-night exposure...**

Livetime vs. Solar angle



#### **Borexino & KamLAND**

Distinguishing LMA and LOW is difficult at present.

Borexino should see a large D/N asymmetry if it's LOW

KamLAND should have a clear signal from reactor  $\overline{v_e}$  disappearance if it's LMA



Lisi et al., PRD 61 073009, (2000)

#### **KamLAND**

Power Room



1000m<sup>3</sup> liquid scintillator 3000m<sup>3</sup> oil+water shield 1300 17-inch PMTs +600 20-inch **PMTs** ■Anti-v<sub>e</sub> from reactors (L~170km) Detect  $e^+$  from  $v_e + p \rightarrow e^+ + n$ (Eth = 1.8 MeV)

# First KamLAND Event -- 27 November, 01



## Borexino



Pseudocumen

Holding Strings
 Stainless Steel Water Tank

18m Ø

Water Buffer

Steel Shielding Plates

8m x 8m x 10cm and 4m x 4m x 4cm

http://almine.mi.infn.it/

- 300 ton liquid scintillator (100 tonsphere 8.5m Ø fid.vol)
- 2200 8-in PMTs
- Ee > 250keV
- $\Box v_e + e \rightarrow v_e + e$
- 55 ev/day for SSM

## **Unitarity of MNSP Matrix**

Are there sterile neutrinos? What is the dimensionality of U? Disappearance experiments over long baselines required

Let U =  $U_{atm} \cdot U_{e3} \cdot U_{solar}$ 

MiniBOONE will test whether a sterile component is present at 1eV<sup>2</sup>

SNO  $\nu_{\mu}$ , K2K, MINOS NC will normalize  $U_{atm}$ 

Low-energy solar neutrinos can test unitarity for U<sub>e3</sub>•U<sub>solar</sub>

- pp flux now known to ~1%
- very long baseline, small  $\Delta m^2$
- High precision CC and ES (or NC) required:
  - e.g. LSND in a 3+1 gives ~5% e flavor in a sterile. Active oscillations complicate pp spectrum

## **Solar Neutrino Experiments**

|              |                |          |                          |      |             |         |        |                 | Solar N        | le ut rin | io Expe | rime nt s |
|--------------|----------------|----------|--------------------------|------|-------------|---------|--------|-----------------|----------------|-----------|---------|-----------|
|              |                | Fid uc i | al Mass                  | Thre | es hold, ke | eV      | BP0    | 0 Rates         | per ye         | ar        |         |           |
| Expt.        | Туре           | Ton s    | of                       | ES   | CC          | NC      | рр     | <sup>7</sup> Be | <sup>8</sup> B | CNO       | Event   | St art    |
|              |                |          |                          |      |             |         | +p e p |                 |                |           | Eff. %  |           |
|              |                |          |                          |      |             |         |        |                 |                | [         |         |           |
| Cl-A r       | Radioch.       | 135      | <sup>37</sup> Cl         |      | 814         |         | 14     | 72              | 363            | 26        | 16      | 1968      |
| Kam io ka    | Cerenkov       | 680      | water                    | 7000 |             |         |        |                 | 120            |           | 100     | 1985      |
| SA GE        | Radioch.       | 23       | <sup>71</sup> Ga         |      | 233         |         | 181    | 86              | 31             | 22        | 25      | 1990      |
| Gallex       | Radioch.       | 12       | <sup>71</sup> Ga         |      | 233         |         | 94     | 45              | 16             | 11        |         | 1991      |
| SuperK       | Cerenkov       | 22000    | water                    | 5000 |             |         |        |                 | 10200          |           | 100     | 1996      |
| GNO          | Radioch.       | 12       | <sup>71</sup> Ga         |      | 233         |         | 94     | 45              | 16             | 11        |         | 1998      |
| <b>SNO</b>   | Cerenkov       | 2000     | water                    | 5000 |             |         |        |                 | 1100           |           | 100     | 1999      |
|              |                | 200      | <sup>2</sup> H           |      | 6400        |         |        |                 | 10000          |           | 100     | 1999      |
|              |                | 200      | <sup>2</sup> H           |      |             | 2 2 2 3 |        |                 | 5000           |           | 50      | 1999      |
|              |                |          |                          |      |             |         |        |                 |                |           |         |           |
| Kam LAND     | Sc int illator | 1000     | scint illator            |      |             |         |        |                 |                |           |         | 2001      |
| Bor ex in o  | Sc int illator | 100      | scint illator            | 250  |             |         |        | 20000           |                |           |         | 2002      |
|              | -              |          |                          |      |             |         |        |                 |                |           |         |           |
| <b>HERON</b> | L He roton s,  | 5        | He                       | 100  |             |         | 3025   | 1 5 00          | 2              | 125       | 80      |           |
|              | Sc int illator |          |                          |      |             |         |        |                 |                |           |         |           |
| TPC          | Gas TPC        | 7        | He                       | 180  |             |         | 4000   |                 |                |           |         |           |
| <b>CLEAN</b> | Sc int illator | 12.5     | Ne                       | 100  |             |         | 9000   |                 |                |           |         |           |
| XMA SS       | Sc int illator |          | Xe                       |      |             |         |        |                 |                |           |         |           |
| LENS         | Sc int illator | 5        | <sup>176</sup> Yb        |      | 301,445     |         | 570    | 400             | 32             | 136       |         |           |
| MOON         | Sc int illator | 3.3      | <sup>100</sup> <b>Mo</b> |      | 168         |         | 409    | 129             | 14             | 34        | 20      |           |
| Cl           | Hyb rid        | 2200     | <sup>37</sup> Cl         |      | 814         |         | 230    | 1200            | 5900           | 420       | 16      |           |
| GaAs         | Ioniza t ion   |          | <sup>71</sup> Ga         |      |             |         |        |                 |                |           |         |           |
| LiF          | Bolometer      | 0.9      | <sup>7</sup> Li          |      | 862         | 487     | 27     | 29              |                |           | 100     |           |

#### **Solar Neutrino Program**

