

A Review of B⁰ Mixing and Lifetimes

Intl. Workshop on Weak Interaction and Neutrinos

2002 Univ. of Canterbury

1978 Iowa State Univ.

E.I. Rosenberg

January 25, 2002

Outline

- Mixing of neutral flavor states
- Measuring the mixing
- Mixing in the Standard Model
- Measuring the lifetimes
- What lies ahead

Many summary plots and combined fits can be found at:

B-Lifetimes Working Group: http://claires.home.cern.ch/claires/lepblife.html

B-Oscillations Working Group: http://lepbosc.web.cern.ch/LEPBOSC/

Last updated for 2001 summer conferences

Where the data come from

- Y_{4s} Symmetric e⁺e⁻ Colliders:
 - **Argus, CLEO**
 - B_d only
 - produced ~at rest
 - 9 x 10⁶ events

- Z⁰ Pole e⁺e⁻ Colliders:
 - LEP expts., SLD
 - B_d and B_s
 - boost
 - \sim 1 x 10⁶ pairs/LEP expt.
 - ~1 x 10⁵ SLD + pol. beam

- Hadron Colliders: CDF, D0
 - · B_d and B_s
 - boost
 - several million events
 - trigger issues
 - Run II in progress
- Y_{4s} Asymmetric e⁺e⁻ Colliders:
 - BABAR, BELLE
 - B_d only
 - boost
 - 3x10⁷ pairs and counting

Mixing of Neutral Flavor States

- Neutral flavor states (K, D, B mesons) are produced in strong interaction flavor eigenstates B⁰,B⁰
- They decay in eigenstates of definite mass and lifetime

$$\left|B_{\pm}^{0}(t)\right\rangle = e^{-\Gamma_{\pm}t/2}e^{-im_{\pm}t}\left|B_{\pm}^{0}\right\rangle$$

If CP is conserved: $CP |B_{\pm}^{0}\rangle = \pm |B_{\pm}^{0}\rangle$

$$\left|B_{\pm}^{0}\right\rangle = \frac{1}{\sqrt{2}}\left\{\left|B^{0}\right\rangle \mp\left|\overline{B^{0}}\right\rangle\right\}; \left|B^{0}\right\rangle = \frac{1}{\sqrt{2}}\left\{\left|B_{+}^{0}\right\rangle + \left|B_{-}^{0}\right\rangle\right\}$$

$$\left| \left\langle \overline{B^0}(t) \middle| B^0 \right\rangle \right|^2 = \frac{1}{4} \left(e^{-\Gamma_+ t} + e^{-\Gamma_- t} - 2\cos(\Delta m \ t) \right);$$

$$= \frac{e^{-\overline{\Gamma}t}}{2} \left(\cosh(\frac{\Delta \Gamma}{2} t) - \cos(\Delta m \ t) \right)$$

January 25, 2002

Time-integrated B Mixing Measurements

$$\chi^{B^{0} \to \overline{B^{0}}} = \chi^{\overline{B^{0}} \to B^{0}}$$

$$= \frac{\int_{0}^{\infty} \left| \left\langle \overline{B^{0}}(t) \middle| B^{0}(t) \right\rangle \right|^{2} dt}{\int_{0}^{\infty} \left| \left\langle \overline{B^{0}}(t) \middle| B^{0}(t) \right\rangle \right|^{2} dt + \int_{0}^{\infty} \left| \left\langle B^{0}(t) \middle| B^{0}(t) \right\rangle \right|^{2} dt}$$

$$= \frac{\left(\Delta m \tau \right)^{2} + \left(\frac{\Delta \Gamma \tau}{2} \right)^{2}}{2\left(1 + \left(\Delta m \tau \right)^{2} \right)} \approx \frac{\left(\Delta m \tau \right)^{2}}{2\left(1 + \left(\Delta m \tau \right)^{2} \right)}$$

Most recent measurement of this type:

CLEO (Phys. Lett. B490: 36-44, 2000) Uses 9.6 x 10⁶ events (9.1 fb⁻¹)

One B is flavor tagged by partially $B^0 \to D^{*+}\pi^-$ or $D^{*+}\rho^-$ reconstructing:

The other B is tagged by

5

high- p_T lepton in: $B \rightarrow X l \nu$

$$\chi_d = \frac{B^0 B^0 + \overline{B^0} \overline{B^0}}{B^0 B^0 + \overline{B^0} \overline{B^0} + B^0 \overline{B^0} + \overline{B^0} B^0} = 0.198 \pm 0.013 \pm 0.014$$

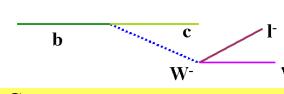
Measuring the B Mixing Oscillations

$$\frac{\Delta\Gamma}{\Delta m} \approx O\left(\frac{m_b^2}{m_t^2}\right) \sim 5 \times 10^{-3}; \text{ for } B_d, \frac{\Delta\Gamma}{\Gamma} < 1\%$$
from lattice QCD

we are measuring terms proportional to
$$\frac{e^{-\overline{\Gamma}t}}{2} \left(1 \pm \cos(\Delta m \ t)\right)$$
Flavor change

- Need to flavor tag both initial and final state
- Need to reconstruct both primary and decay vertices to measure decay length: $t = mL/p = L/\beta\gamma$

beam spot, vertexing from tracks, intrinsic detector resolution

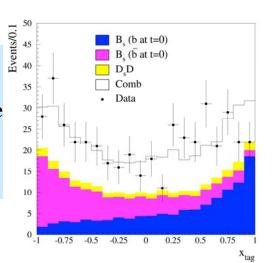

$$\sigma_{t} = \left(\frac{\sigma_{l}m}{p}\right) \oplus t\left(\frac{\sigma_{p}}{p}\right)$$

decaying B momentum or good estimator needed (boost)

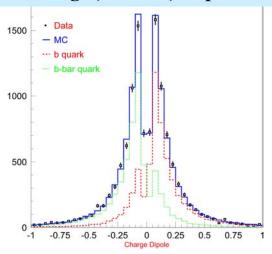
BABAR: $\delta(\beta \gamma)/\beta \gamma = 0.1\%$

Tagging Methods

Initial State:


- can tag same side or opposite side
- side side: jet charge and topology
- opposite side: techniques similar to final state tags

Final State:

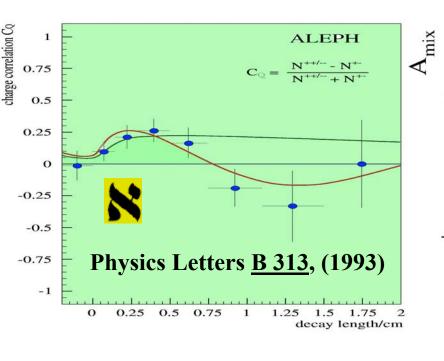

- b \rightarrow c \rightarrow s decays
 - charge of primary lepton in sl decay
 - charge of charm meson (fully or partially reconstructed)
 - charge of kaon
- momentum-weighted jet charge
- dipole charge between D and B
- jet angles (polarized beams)
- multivariate constraints (perhaps realized in a neural net)
- full reconstruction

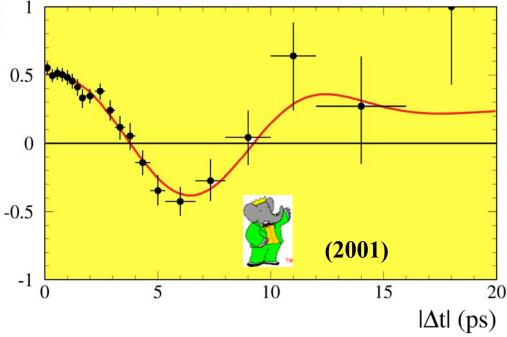
DELPHI 9 Discr. variables:

5 opposite side; 3 same side uncorrelated with final state tag;1 both sides: polar angle

SLD sign(QD-QB)*separation

Improvement in Detection

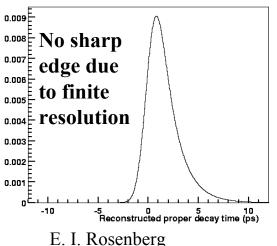

Statistical Significance


 $S \approx \sqrt{\frac{N}{2}} f(1-2w) e^{-\frac{1}{2}(\Delta m \sigma_t)^2}$

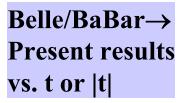
 σ_t more important for large Δm Likelihood fit to:

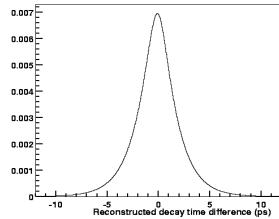
$$\Gamma e^{-\Gamma t} \left(1 \pm \left(1 - 2w\right)\cos\left(\Delta mt\right)\right) \otimes res$$

w is mistag fraction; $(1-2w)=(1-2w_i)(1-2w_f)$

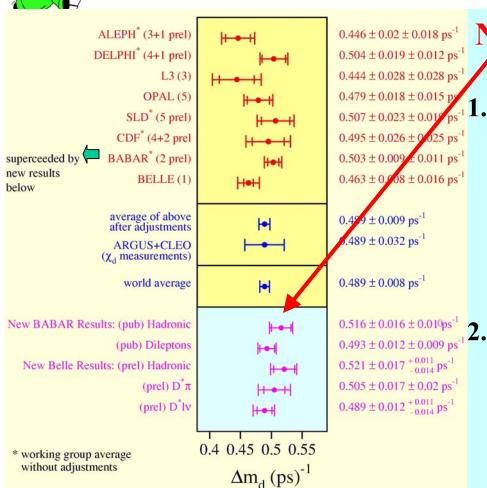


What's different about the Asymmetric B-factories


Coherent Production with boost: finding flavor of one B fixes the flavor of the second B at the same time


 $\begin{array}{c} & & \\ & & \\ & \leftarrow \Delta z \rightarrow \end{array}$ Measured B

Either the tagging B or the reconstructed B can decay first, Δz (or Δt , proper time) can be < 0



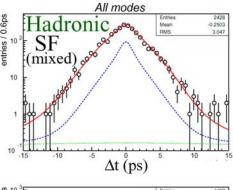
Tagging B

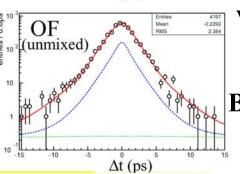
Update to July 2001 WG Summary

New Results:

- BABAR (submitted for publication): Inclusive Dilepton Events (20.7 fb⁻¹) Fully reconstructed hadronic events (29.7 fb⁻¹)
 Both update preliminary results in WG summary
- BELLE (3 preliminary results) in Nov based on 29.1 fb⁻¹:
 Fully reconstructed hadronic events Partial D*π reconstruction
 Partial D*lv reconstruction

Asymmetric B-factories Analyses

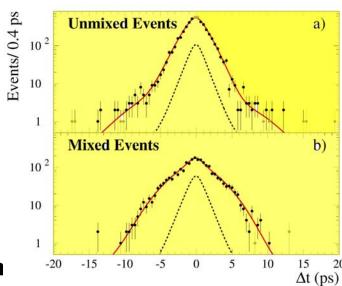

Full Reconstruction Analyses: Hadronic Decay Modes



$$oldsymbol{D}^{(*)-}\pi^+;oldsymbol{D}^{*-}
ho^+$$

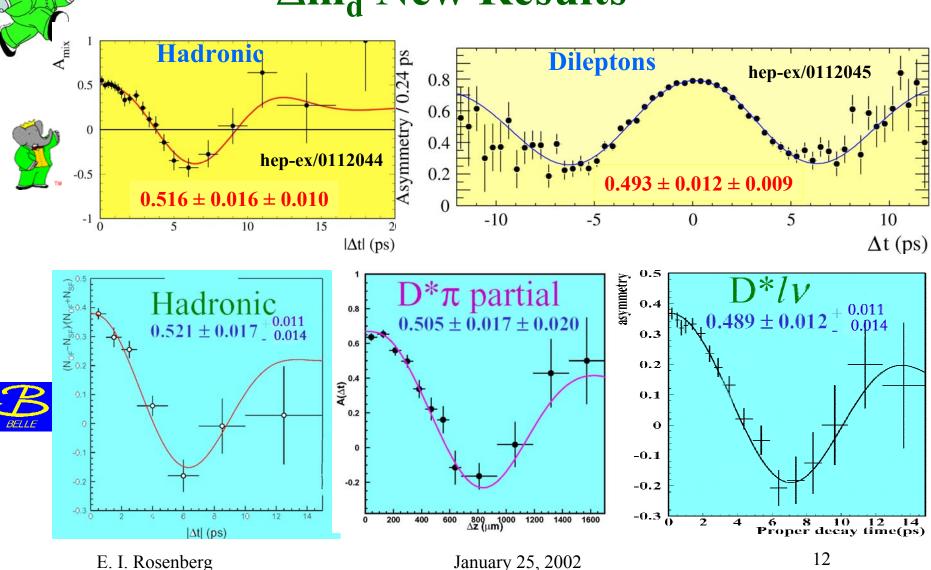
$$D^{(*)-}\pi^+;D^{(*)-}\rho^+;D^{(*)-}a_1^+;J/\psi K^{*0}$$

Simultaneous Maximum Likelihood Fit to mixed and unmixed events


$$\Gamma e^{-\Gamma \Delta t} \left(1 \pm \left(1 - 2w\right) \cos\left(\Delta m \Delta t\right)\right) \otimes res$$

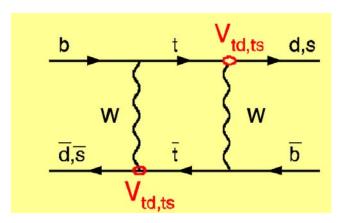
Output is Δm ; w (mistag rates), and resolution parameters for signal and background (44 total for BABAR); τ_{Bd} fixed at PDG value (1.548 ps)

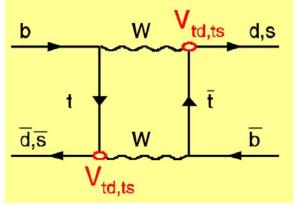
Other analyses: dilepton events


Belle: D*lv

 $D^{*+}\pi$ partial reconstruction (high and low p π 's)

BE


∆m_d New Results



 $B^0 \Leftrightarrow B^0$ Mixing and the Standard Model

In the Standard Model, the transformation takes place via box diagrams and gives us information on V_{td} (B_d mesons) and V_{ts} (B_s mesons)

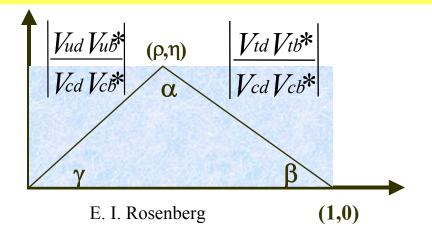
$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_{B_d} m_W^2 S\left(\frac{m_t^2}{m_W^2}\right) \times \left|V_{tb}^* V_{td}\right|^2 f_{B_d}^2 B_{B_d} \eta_B$$
Decay constant

Bag parameter

Decay constant

13

IOWA STATE UNIVERSITY



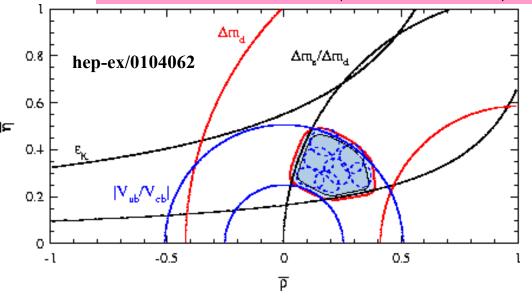
$$\binom{\mathbf{u}}{\mathbf{d}} \binom{\mathbf{c}}{\mathbf{s}} \binom{\mathbf{t}}{\mathbf{b}}$$

•The flavor eigenstates of the quarks are not d (c) (t) the flavor eigenstates of the quarks are not the weak interaction eigenstates—there are transitions between the families. transitions between the families.

•This mixing is described by the CKM Matrix. Where the three diagonal elements V_{ud} , V_{cs} , and $V_{tb} \approx 1$, family is almost a good quantum number.

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

•The CKM matrix is unitarity which can be expressed as: $V_{ud}V_{ub}*+V_{cd}V_{cb}*+V_{td}V_{tb}*=0$


IOWA STATE UNIVERSITY

Constraining the Unitarity Triangle

- Lattice QCD calculations: uncertainty in $B_{B_d} \otimes f_{B_d} \sim \!\! 20\%$
- \Rightarrow limits extraction of V_{td} from Δm_d
- Ratio $\Delta m_s/\Delta m_d$ gives us a better limit

$$\Delta m_{_d} \propto |V_{_{td}}|^2 = A^2 \lambda^6 \left(\left(1 - \rho \right)^2 + \eta^2 \right); \Delta m_{_s} \propto |V_{_{ts}}|^2 = A^2 \lambda^4$$

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s} f_{B_s}^2 B_{B_s}}{m_{B_d} f_{B_d}^2 B_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2$$

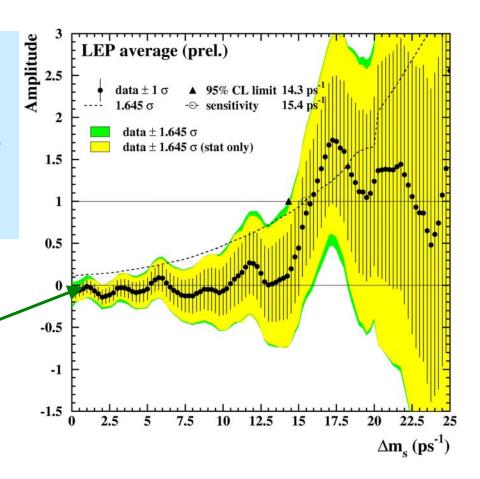
$$= \frac{m_{B_s}}{m_{B_d}} \xi \left| \frac{V_{ts}}{V_{td}} \right|^2$$

Lattice QCD: "known" to ~ 5%

E. I. Rosenberg

January 25, 2002

B⁰_s Mixing

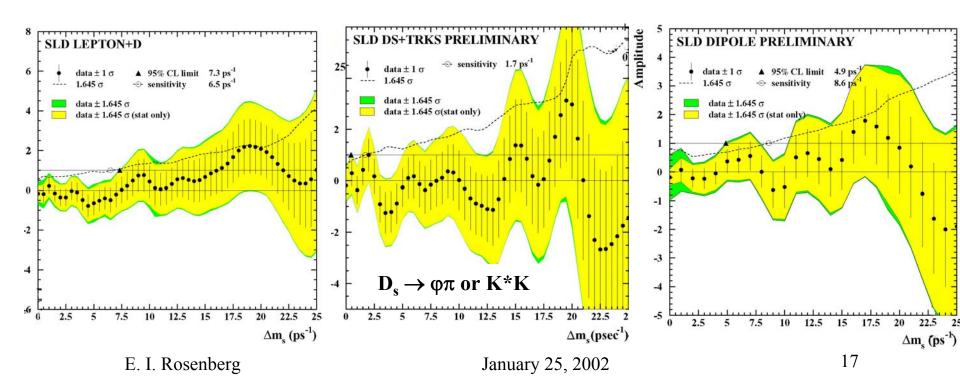

- Oscillations not yet observed

$$\overline{\Gamma}e^{-\overline{\Gamma}t}(1\pm\mathscr{A}\cos\Delta m_s t)$$

Bands show 95% C.L. Limits

LEP/SLD and CDF provide data

E. I. Rosenberg

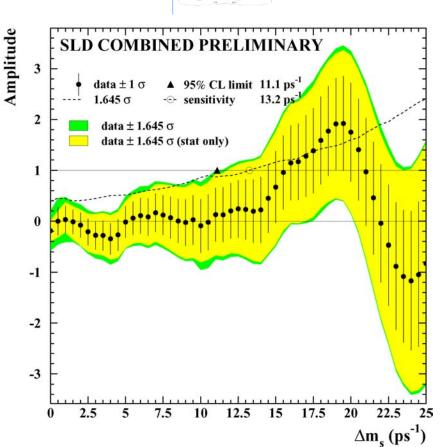


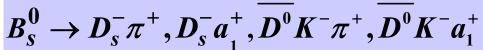
New Results from SLD

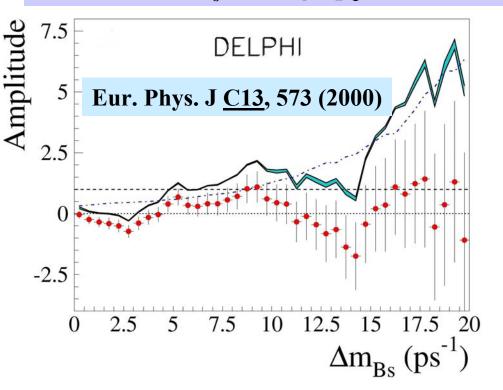
Same initial state tag: Pol. A_{FB} or NN multivariate using opposite side var.

Three different final state tags – hierarchical to remove overlaps:

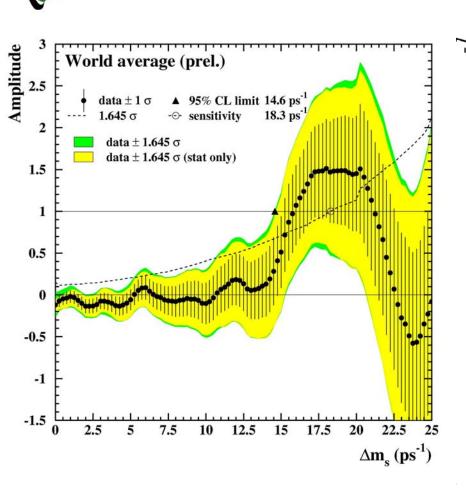
Lepton + topological D $B_s \rightarrow D_s X$; D_s reconstructed Dipole Charge

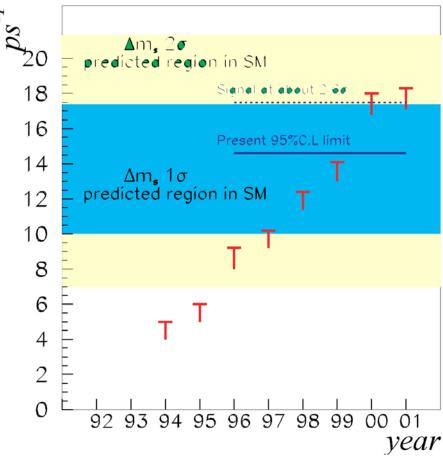



New Δm_s Limits



E. I. Rosenberg




Complete D reconstruction also exclusive D_s and high-p_T hadron

Current Status of B_s Mixing

E. I. Rosenberg

January 25, 2002

Lifetime Measurements

$$\left|\left\langle \overline{B^0}(t)\right|B^0\right\rangle\right|^2 = \frac{e^{-\overline{\Gamma}t}}{2}\left(1-\cos(\Delta m\ t)\right)$$

$$\left|\left\langle B^{0}(t)\right|B^{0}\right\rangle\right|^{2}=\frac{e^{-\overline{\Gamma}t}}{2}\left(1+\cos(\Delta m\ t)\right)$$

- Tag event as B
- Measure B momentum
- Measure Decay length

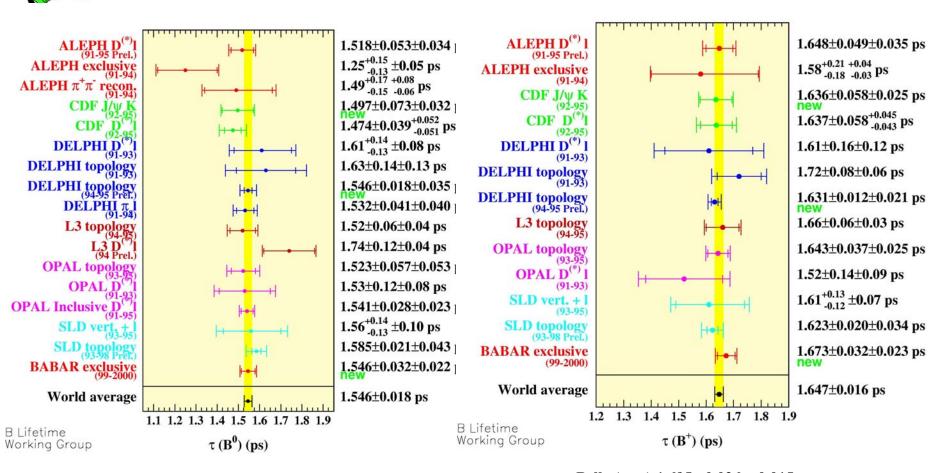
Exclusive Event Tagging

 $B \rightarrow D^*lv(X)$; reconstruct D^*

 $B \rightarrow DX$

 $\mathbf{B} \to \mathbf{J}/\psi \mathbf{K}$

Inclusive


Topology:

Displaced vertex; event shape

Full reconstruction (new)

Working Group Summary

Belle (new) $1.554 \pm 0.030 \pm 0.019$ ps

Belle (new) $1.695 \pm 0.026 \pm 0.015$ ps

IOWA STATE UNIVERSITY

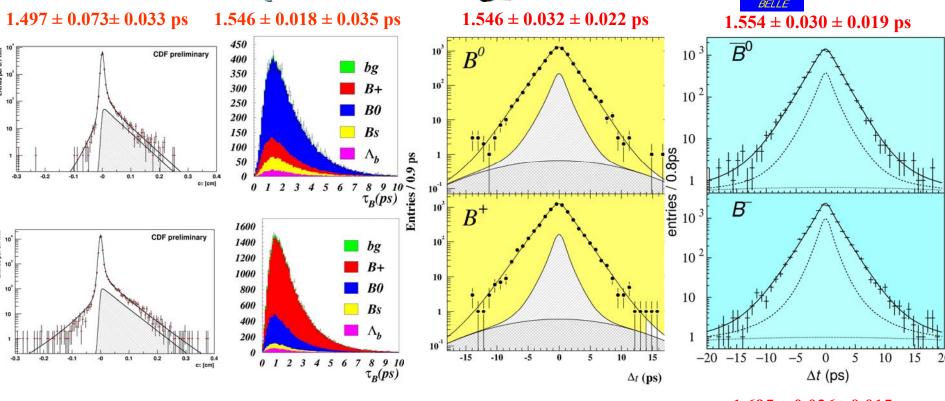
PRL <u>87</u> 201803 (2001)

New Results on Lifetime

BB

110 pb⁻¹ J/ψK

2.1 M Z→hadrons topology tag



Fully reconstructed hadrons

20.0 fb⁻¹

29.1 fb⁻¹

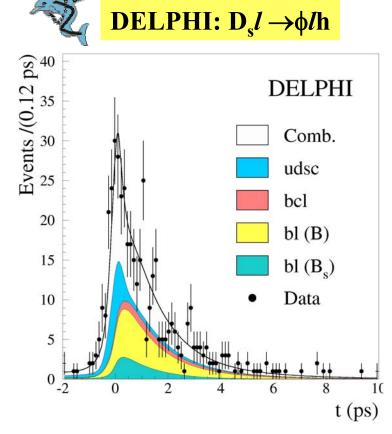
 $1.636 \pm 0.058 \pm 0.025$ ps

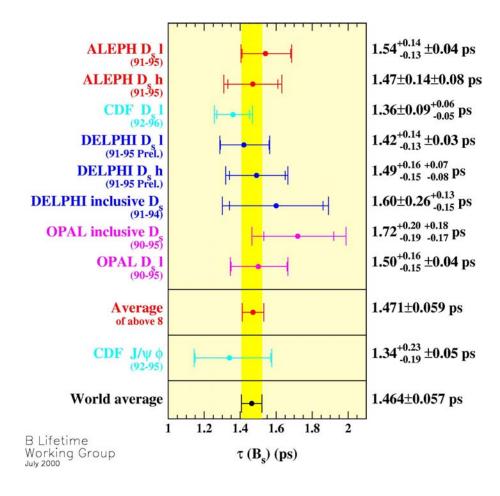
 $1.631 \pm 0.012 \pm 0.021$ ps

 $1.673 \pm 0.032 \pm 0.023$ ps

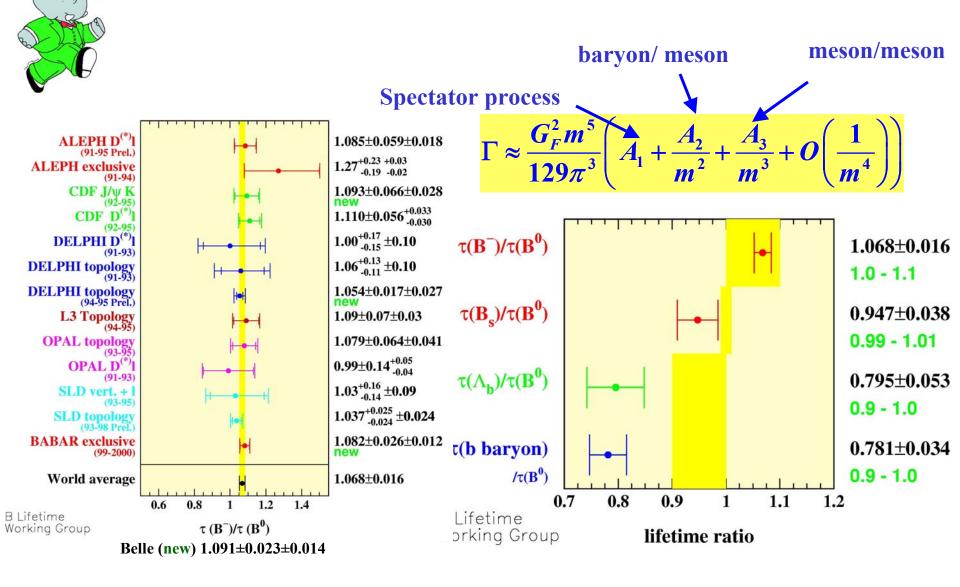
 $1.695 \pm 0.026 \pm 0.015$ ps

E. I. Rosenberg


January 25, 2002

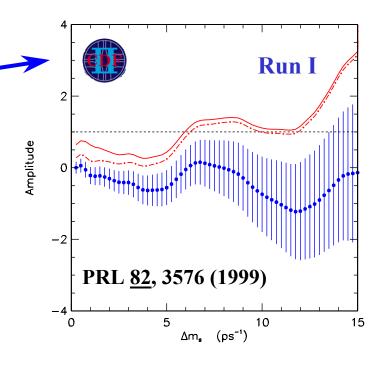

22

B_s Lifetime



Lifetime Ratios

BABAR and Belle:


 $30 \text{ fb}^{-1} \rightarrow 300 \text{ fb}^{-1} 2004$

- **Go beyond \Deltam:** $\Delta\Gamma$
- CP effects: $\varepsilon(|q/p|)$

• CDF/D0 100 pb⁻¹ \rightarrow 2 fb⁻¹ 2004

- probe B_s mixing to $x_s \approx 30$ with semileptonic decays $(x_s = \Delta m_s/\Gamma_s)$
- probe B_s mixing to x_s≈60 in hadronic mode
- Precision lifetime ratios (B_s/B⁰)

$$\left| \boldsymbol{B}_{\pm} \right\rangle = \boldsymbol{p} \left| \boldsymbol{B}^{0} \right\rangle \mp \boldsymbol{q} \left| \overline{\boldsymbol{B}^{0}} \right\rangle$$

BBP

CDF Expectations

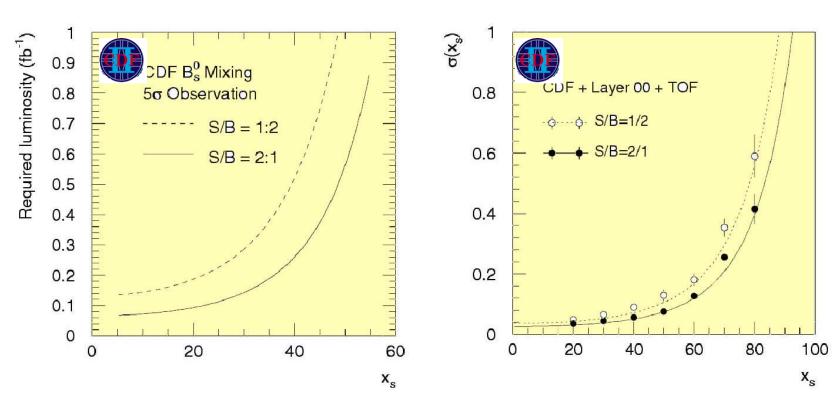
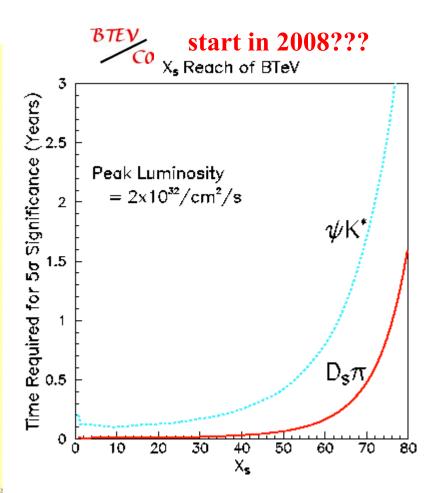


Figure 1: Left: Required luminosity to measure at $5\sigma x_s$ as function of x_s . Right: Error on x_s as function of x_s .



And much later

LHC start in 2006?

	ATLAS	CMS	LHCb
Channels used:			
B_s^0 decay channels	$D_s^-\pi^+$	$D_s^-\pi^+$	$D_s^-\pi^+$
	$D_s^- a_1^+$		
D_s^- decay channels	$\phi\pi^-$	$\phi\pi^-$	$\phi\pi^-$
	7/-	$\phi \pi^{-} K^{*0}K^{-}$	(see text)
ϕ decay channel	K^+K^-	K^+K^-	K^+K^-
a_1^+ decay channel	$\rho^0\pi^+$	5005 00000	
K*0 decay channel		$K^+\pi^-$	
Assumptions:			
$B(\bar{b} \to B_s^0)$	0.105	0.105	0.12
$B(B_s^0 \to D_s^- \pi^+)$	3.0×10^{-3}	3.0×10^{-3}	3.0×10^{-3}
$B(B_s^0 \to D_s^- a_1^+)$	6.0×10^{-3}	_	-
$B(\tilde{D}_s^- \to \tilde{\phi}\pi^-)$	0.036	0.036	
$B(D_s^- \to K^{*0}K^-)$	_	0.033	-
$B(D_s^- \to K^+K^-\pi^-)$	_	-	0.04
B_s^0 lifetime	1.54 ps	1.61 ps	1.57 ps
Analysis performance:			
Reconstructed signal events per year	3457	4500	86000
Rec. and tagged signal events per year	3457	4500	34500
B_s^0 purity of tagged sample	0.38	0.5	0.95
Wrong tag probability	0.22	0.22	0.30
Proper time resolution(Gaussian function(s))	50 fs (60.5%)	65 fs	43 fs
NO. (10.44 del.)	93 fs (39.5%)		
ΔM_s reach after one year of running:			
Measurable values of ΔM_s up to	$30 \mathrm{ps}^{-1}$	26 ps ⁻¹	48ps^{-1}
95% CL excl. of ΔM_s values up to	_	29ps^{-1}	58 ps ⁻¹
$\sigma(\Delta m_s) ext{ for } \Delta m_s = 20 ext{ ps}^{-1}$	0.11	_	0.011
x_s reach after one year of running:			
Measurable values of x_s up to	46	42	75
95% CL excl. of x_s values up to	-	47	91
II as a control of the policy of the control of the			

Table 22: Summary of the analyses and results for B_a^0 oscillation frequency measurements by the LHC experiments

