CP Violation in the **B** Meson System and Outlook

Weak Interactions and Neutrinos 2002 Christchurch, NZ 22 January 2002

David B. MacFarlane University of California at San Diego

Luminosities at the Y(45)

2002/01/14 18.45

ARGUS, 1987

Mixed full event and dilepton studies demonstrate mixing

 $B_1^0 \to D_1^{*-} \mu_1^+ \nu_1, D_1^{*-} \to \overline{D}^0 \pi_1^ B_2^0 \to D_2^{*-} \mu_2^+ \nu_2, D_1^{*-} \to D^- \pi^0$

Integrated luminosity
 1983-87:
 103 pb⁻¹

Seeds sown at Snowmass 1988 for asymmetric-energy B Factories

Four Main Themes in B Physics

> CP Violation in neutral B decays

- Due to decay amplitude interference or in mixing
- Due to interference of mixing and decay amplitudes

> Studies and searches for rare decays

 Sensitive to physics beyond the Standard Model either in rate or direct *CP* violation

Precision determination of CKM matrix elements

 Need to significantly improve in order to determine whether observed CP violation is consistent with SM predictions

> Improving our understanding of B decays

• Feeds back into precision SM tests and measurements

Roughly 100 journal and conference papers have been produced by CLEO, BABAR, and BELLE in the last year: This talk will concentrate on CP violation and prospects!

CP Violation in the Standard Model

Mass Eigenstates \neq Weak Eigenstates \Rightarrow Quark Mixing

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CKM Matrix

Complex matrix described by 4 independent real parameters

- > *CP* Violation in Decay
- > CP Violation in Mixing
- CP Violation in Interference Mixing & Decay

CP Violation in Decay

CP violation in decay (direct CPV) results from interference between various terms in the decay amplitude:

$$\left| \overline{A}_{\overline{f}} / A_{f} \right| \neq 1 \implies \operatorname{Prob}(\overline{B} \to \overline{f}) \neq \operatorname{Prob}(B \to f)$$

CP violation in decay amplitude

Time-independent CP observable:

$B \rightarrow K\pi$ and determination of γ

Expect significant interference of tree and penguin amplitudes

potentially large CP asymmetries

CP-averaged BF measurements can lead to non-trivial constraints (bounds) on *CP* angle γ

General analysis:

- > EW penguins
- > SU(3) breaking
- Rescattering (FSI)

Fleischer & Mannel (98) Gronau, Rosner, London (94, 98) Neubert & Rosner (98) Buras & Fleischer (98) etc.

Experimental test:

> Direct *CP* violation in $B \rightarrow K\pi$ modes

 $B \rightarrow K\pi$, $\pi\pi$ at CLEO

$B \rightarrow \pi \pi / K \pi BF$ Summary

$BF(\times 10^6)$	CLEO 9.1 fb-	BABAR 20.7 fb ⁻¹	BELLE 10.5 fb ⁻¹	World Average
$B^0 \to \pi^+\pi^-$	$\overline{4.3^{+1.6}_{-1.4}\pm 0.5}$	$4.1 \pm 1.0 \pm 0.7$	$5.6^{+2.3}_{-2.0} \pm 0.4$	$4.44_{-0.86}^{+0.89}$
$B^0 \rightarrow K^+ \pi^-$	$17.2^{+2.5}_{-1.4} \pm 1.2$	$16.7 \pm 1.6 \pm 1.3$	$19.3^{+3.4}_{-3.2} {}^{+1.5}_{-0.6}$	$17.37 {}^{+1.47}_{-1.30}$
$B^0 \rightarrow K^+ K^-$	<1.9 (90%)	< 2.5 (90%)	< 2.7 (90%)	
$B^+ \to \pi^+ \pi^0$	<12.7 (90%)	$5.7^{+2.0}_{-1.8} \pm 0.8$	<13.4 (90%)	
$B^+ \to K^+ \pi^0$	$11.6 \begin{array}{c} +3.0 & +1.4 \\ -2.7 & -1.3 \end{array}$	$10.8 {}^{+2.1}_{-1.9} \pm 1.0$	$16.3^{+3.5}_{-3.3}{}^{1.6}_{1.8}$	$12.13 {}^{+1.70}_{-1.67}$
$B^+ \rightarrow K^0 \pi^+$	$18.2 ^{+4.6}_{-4.0} \pm 1.6$	$18.2 + 3.3 - 3.0 \pm 2.0$	$13.7^{+5.7}_{-4.8}{}^{1.9}_{1.8}$	$17.41^{+2.60}_{-2.51}$
$B^0 \rightarrow K^0 \pi^0$	$14.6 \begin{array}{c} +5.9 \\ -5.1 \end{array} \begin{array}{c} +2.4 \\ -3.3 \end{array}$	$8.2 {}^{+3.1}_{-2.7} \pm 1.2$	$16.0^{+7.2}_{-5.9}{}^{+2.5}_{-2.7}$	$10.73^{+2.66}_{-2.66}$

PRL 85 (2000) 515

PRL 87, 15802 (2001) PRL 87, 101801 (2001)

 $K\pi \gg \pi\pi$ suggests $K\pi$ mostly penguin and $\pi\pi$ may have significant contamination

Ratios of Branching Fractions

$$\frac{BF(B \to \pi^{+}\pi^{-})}{BF(B \to K^{\pm}\pi^{\mp})} = 0.256^{+0.056}_{-0.052} \qquad 2 \times \frac{BF(B^{\pm} \to K^{\pm}\pi^{0})}{BF(B \to K^{\pm}\pi^{\mp})} = 1.40^{+0.23}_{-0.22}$$
$$\frac{BF(B \to K^{\pm}\pi^{\mp})}{BF(B^{\pm} \to K\pi^{\pm})} = 1.00^{+0.19}_{-0.15} \qquad \frac{1}{2} \times \frac{BF(B \to K^{\pm}\pi^{\mp})}{BF(B \to K\pi^{0})} = 0.81^{+0.28}_{-0.17}$$

+0.28-0.17

CP Charge Asymmetries in $K\pi$ modes

Model dependent predictions exist; possible constraints on CP angle γ **BABAR** PRL 87, 15802 (2001) $A_{CP}(K^{\pm}\pi^{\mp}) = -0.19 \pm 0.10$ $A_{CP}(K^{\pm}\pi^{0}) = +0.00 \pm 0.18$ $A_{CP}(K_{S}^{0}\pi^{\pm}) = -0.21 \pm 0.18$

CLEO PRL 85, 525 (2000) $A_{CP}(K^{\pm}\pi^{\mp}) = -0.04 \pm 0.16$ $A_{CP}(K^{\pm}\pi^{0}) = -0.29 \pm 0.23$ $A_{CP}(K_{S}^{0}\pi^{\pm}) = +0.18 \pm 0.24$

BELLE PR D64, 071101 (2001) $A_{CP}(K^{\pm}\pi^{\mp}) = +0.04^{+0.19}_{-0.17}$ $A_{CP}(K^{\pm}\pi^{0}) = -0.06^{+0.22}_{-0.20}$ $A_{CP}(K_{S}^{0}\pi^{\pm}) = +0.10^{+0.43}_{-0.34}$

Asymmetries in Other Charmless Modes

BABAR hep-ex/0111087

Penguin b \rightarrow sg or CKM suppressed tree

Inclusive b \rightarrow **s** γ **Decays**

<u>CP Asymmetries:</u>

Non-SM physics may contribute to larger asymmetries

$$\begin{aligned} A_{CP} &= (-0.079 \pm 0.108_{(stat)} \pm 0.022_{(add \ syst)}) \times (1.0 \pm 0.03_{(mult \ syst)}) \\ &= 0.965 \cdot A_{CP} (b \rightarrow s \gamma) + 0.02 \cdot A_{CP} (b \rightarrow d \gamma) \\ &- 0.27 < A_{CP} < +0.10 \quad (90\% CL) \end{aligned}$$

Exclusive Radiative Decays

 Very little *CP*-violation expected in the K*γ mode (window on **New Physics**)
 Up to ~15% *CP*-Violation effect in the suppressed ργ mode (*not observed*)

$$BF(B^{0} \to K^{*0}\gamma) = (4.55^{+0.72}_{-0.68(stat)} \pm 0.34_{(syst)}) \times 10^{-5}$$

$$BF(B^{+} \to K^{*+}\gamma) = (3.76^{+0.89}_{-0.83} (stat)} \pm 0.28_{(syst)}) \times 10^{-5}$$

$$A_{CP} = +0.08 \pm 0.13_{(stat)} \pm 0.03_{(syst)}$$

CLEO PRL **84**, 5283 (2000)

$$\begin{array}{l} \mathsf{BF}(B^{0} \to K^{*0} \gamma) &= (4.23 \pm 0.40_{(stat)} \pm 0.22_{(syst)}) \times 10^{-5} \\ \mathsf{BF}(B^{+} \to K^{*+} \gamma) &= (3.83 \pm 0.62_{(stat)} \pm 0.22_{(syst)}) \times 10^{-5} \\ \mathcal{A}_{CP} &= -0.044 \pm 0.076_{(stat)} \pm 0.012_{(syst)} \end{array}$$

BABAR hep-ex/0110065

CP Asymmetries in Charmonium B Decays

No CP asymmetry expected in SM is these channels

$$A_{CP}(J/\psi K^{\pm}) = (+1.8 \pm 4.3_{(stat)} \pm 0.4_{(syst)})\%$$

$$A_{CP}(\psi(2S)K^{\pm}) = (+2.0 \pm 9.1_{(stat)} \pm 1.0_{(syst)})\%$$
CLEO PRL 84 (2000) 5940
$$A_{CP}(J/\psi K^{+}) = (+0.4 \pm 2.9_{(stat)} \pm 0.4_{(syst)})\%$$
BABAR preliminary (EPS2001)

CP Violation in Decay: Summary

> Many searches for CP violation in B meson decays

• So far, no experimental evidence for direct CP violation

"Copious" modes (e.g. charmonium)

- In general, expect small asymmetries
- Asymmetry measurements at the few percent level
- "Rare" modes (charmless, radiative penguin decays)
 - o Potentially large *CP* asymmetries
 - test the validity of theoretical models
 - o Best asymmetry measurements at the 10% level
 - o Much more statistics is needed!

Nota Bene: Direct *CP* violation is now firmly established in the kaon system

 $\operatorname{Re}(\varepsilon'/\varepsilon) = (17.2 \pm 1.8_{(\text{stat+syst})}) \times 10^{-4}$

E731, NA31, KTeV, NA48

CP Violation in Mixing

Formalism for CP Violation in Mixing
CP (or T) violation in the B⁰B⁰ mixing matrix results from:
Mass Eigenstates
$$|B_{L,H}\rangle \neq CP$$
 Eigenstates $|B_{\pm}\rangle$
 $|B_{L,H}\rangle = p |B^{0}\rangle \pm q |\overline{B}^{0}\rangle = \frac{1}{\sqrt{1 + |\epsilon_{B_d}|^2}} (|B_{\pm}\rangle + \epsilon_{B_d} |B_{\mp}\rangle)$
 $\left|\frac{q}{p}\right| = \left|\frac{1 - \epsilon_{B_d}}{1 + \epsilon_{B_d}}\right| \neq 1 \implies Prob(B^{0} \rightarrow \overline{B}^{0}) \neq Prob(\overline{B}^{0} \rightarrow B^{0})$

<u>Time-dependent *CP* observable</u>: $\Gamma(\overline{D}^0)$ (1) $\Gamma(D^0)$ (1)

$$A_{T}(t) = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \to \ell^{+}\nu X) - \Gamma(B_{phys}^{0}(t) \to \ell^{-}\overline{\nu}X)}{\Gamma(\overline{B}_{phys}^{0}(t) \to \ell^{+}\nu X) + \Gamma(B_{phys}^{0}(t) \to \ell^{-}\overline{\nu}X)} \approx \frac{4\operatorname{Re}(\epsilon_{B_{d}})}{1 + |\epsilon_{B_{d}}|^{2}} \quad \text{with time}$$

In the *B* System, $\Delta m_{B_d} = m_{B_H} - m_{B_L} \gg \Delta \Gamma_{B_d} \implies \epsilon_{B_d} \sim \text{pure imaginary}$ SM: $A_T \le 2.10^{-3}$ $A_T \approx 10^{-2} \Rightarrow \text{New Physics}$

See for instance Bañuls & Bernabéu hep-ph/0005323

Results from LEP

Results from B Factories

CP Violation in Mixing: Summary

So far, no experimental evidence of large *CP* violation in *B*⁰ mixing

To a good approximation: |q/p| = 1

$$q \, / \, p = e^{-2i\phi_M} = - \left| \, M_{12} \, \right| \, / \, M_{12} \, \blacktriangleleft \qquad \mbox{dispersive part} \\ \mbox{of the } B^0 \, \rightarrow \, \overline{B}^0 \\ \mbox{amplitude} \label{eq:product}$$

V_{td}*

V_{tb}

d

h

 B^{0}

V_{tb}

 V_{td}^{r}

h

 \overline{B}^0

t

Time evolution of a state produced as a pure B^0 :

 $|B^{0}_{_{phys}}(t)\rangle \propto cos(\Delta m_{B_{d}}t/2)|B^{0}\rangle + i e^{-2i\phi_{M}} sin(\Delta m_{B_{d}}t/2)|\overline{B}^{0}\rangle$

In the SM: $\phi_M = arg(V_{td}V_{tb}^*) = \beta$

New physics can change the mixing parameter:

 $M_{12} = M_{12}^{SM} + M_{12}^{NP} \qquad \phi_M \rightarrow \beta + \phi_{NP}$

BELLE (10.5 fb⁻¹) PRL 86, 2509 (2001)
BABAR (20.7 fb⁻¹) PRL 86, 2515 (2001)
BABAR (29.7 fb⁻¹) PRL 87, 091801 (2001)
BELLE (29.1 fb⁻¹) PRL 87, 091802 (2001)
BABAR (29.7 fb⁻¹) hep-ex/0201020

Single weak phase \rightarrow no direct CPV $|\lambda_{J/\psi K_{S,L}^0}| = 1$

$$A_{J/\psi K_{S,L}^0}(t) = -\eta_{J/\psi K_{S,L}^0} \cdot \sin 2\beta \cdot \sin (\Delta m_{B_d} t)$$

Theoretically clean way to measure sin2ß Clear experimental signatures

Relatively large branching fractions

Results from CDF at the Tevatron

Experimental Technique for B Factories

Measurement of B⁰ and B⁺ Lifetime

3. Reconstruct Inclusively the vertex of the "other" B meson (B_{TAG})

- 1. Fully reconstruct one B meson in flavor eigenstate (B_{REC})
- 2. Reconstruct the decay vertex

4. compute the proper time difference Δt 5. Fit the Δt spectra

Samples of Fully-Reconstructed B Decays

B-Lifetimes: Time Distributions

B-Lifetime Measurements

$$\begin{split} \tau_{_{B^0}} = & 1.546 \pm 0.032 \pm 0.022 \ \text{ps} \\ \tau_{_{B^+}} = & 1.673 \pm 0.032 \pm 0.023 \ \text{ps} \\ \tau_{_{B^+}} \, / \, \tau_{_{B^0}} = & 1.082 \pm 0.026 \pm 0.012 \end{split}$$

BABAR PRL 87, 201803 (2001)

(error PDG2000 ~ 0.03 ps, stat+syst)

- Good agreement with previous lifetime measurements
- Excellent control of the time resolution function (parameterization, tails)

Proof of principle for time-dependent analysis at *B* Factories

B-Lifetime Measurements

Measurement of B^oB^o Mixing

5. compute the proper time difference ∆t
6. Fit the ∆t spectra of mixed and unmixed events

B-Mixing Analysis: Time Distributions

 ω is the flavor mis-tag probability $R(\Delta t)$ is the time resolution function

Mixing with Hadronic Sample

Time-Dependent CP Asymmetries

Time-dependence of $B^0 - \overline{B}^0$ mixing

Use the large statistics $\mathrm{B}_{\mathrm{flav}}\,$ data sample to determine the mistag probabilities and the parameters of the time-resolution function

Measurement of $sin2\beta$

5. compute the proper time difference Δt

6. Fit the Δt spectra of B^0 and \overline{B}^0 tagged events

CP Sample for BABAR

29.7 fb-1 or 32 million BB pairs

CP Sample for BELLE

29.1 fb-1 or 31 million BB pairs

CP Analysis: Time Distributions

same mistag probability ω and time-resolution function $R(\Delta t)$

Raw Time Distributions

Raw Asymmetries $A_{CP}(\Delta t) \approx (1-2\omega) . \sin 2\beta . \sin(\Delta m_{B_d} \Delta t)$

BABAR Result for sin2 β

"Corrected" Asymmetries

World Average

Search for Direct CP

$$A_{CP} = C_{f_{CP}} \cos \Delta m_d \Delta t + S_{f_{CP}} \sin \Delta m_d \Delta t$$

(assuming $\Delta\Gamma$ = 0)

If more than one amplitude matters $|\lambda|$ might be different from 1

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 Im \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

Probing new physics: only use η_{CP} =-1 sample (contains no mixing background) BABAR: $|\lambda| = 0.93 \pm 0.09$ (stat.) ± 0.03 (sys.) BELLE: $|\lambda| = 1.09 \pm 0.14$ (stat.)

No evidence of direct CP violation due to decay amplitude interference; none expected

Coefficient of the "sine" term unchanged

Future sin2 β measurements

> Increase statistics in current modes

 $\sigma_{\sin 2\beta} \sim 0.08 \text{ for } 100 \text{ fb}^{-1} \rightarrow 0.03 \text{ for } 500 \text{ fb}^{-1}$

BELLE and BABAR

Summer 2002 Around 2006

> Systematic error projections: $0.05 \rightarrow 0.016$

- $\circ~\Delta t$ resolution 0.03 \rightarrow 0.01: better alignment, vertex understanding
- Tagging 0.03 \rightarrow 0.01: use flavor samples similar to CP events
- $_{\circ}~$ Background CP 0.03 \rightarrow 0.01: Measure CP content

Many other CP modes can potentially provide independent measurement of sin2β

- Different quark processes
- Various penguin contributions
- Angular analysis in VV modes

More CP channels: $B \rightarrow D^{(*)}D^{(*)}$

Measurement of Transversity

Preliminary BABAR hep-ex/0109009

More CP channels: $B \rightarrow \phi K^{(*)}$

- \succ Pure b \rightarrow s penguin process
- > Provide an independent measurement of CP violation
 - ϕK_{S}^{0} is CP = -1 with $Im\lambda \sim sin 2\beta$
 - Sensitive to new physics in $b \rightarrow s$ loop diagram

CLEO PRL **86**, 3718 (2001) **BABAR** PRL **87**, 151801 (2001)

Other Modes for $sin 2\beta$

Extraction of sin2 α

Without penguins: $C_{\pi\pi} = 0, S_{\pi\pi} = -\sin 2\alpha$ Penguins are expected to be sizable: $P/T | \sim 0.3$ $C_{\pi\pi} \neq 0, S_{\pi\pi} = -\sin \alpha_{eff} = -\sin 2\alpha \times [1 + O(P/T)]$ Expect $\delta \sin 2\alpha_{eff} \sim 0.3 - 0.4$ for 100 fb⁻¹

Strategies to extract α from the asymmetry measurement

Isospin analysis (Gronau/London)
 Clean theoretically, but challenging experimentally
 Need $B^0 \rightarrow \pi^0 \pi^0$ and $\overline{B}{}^0 \rightarrow \pi^0 \pi^0$

Grossman/Quinn Bound

$$\sin^2 \Delta < \frac{BF(B \to \pi^0 \pi^0)}{BF(B^{\pm} \to \pi^{\pm} \pi^0)}$$
 with $\Delta = a_{eff} - a$

Theoretical constraints on Penguin pollution

Two-Body Data Sample

9741 two-prong candidates in 30.4 fb⁻¹ (97% background, almost entirely from continuum)

Sum of $\pi^+\pi^-/K^+\pi^-$: No particle ID used until the fit is performed

> m_{ES} distributions for the different tagging categories

Projections of Data Sample

 $K\pi$ projection: 85% efficiency

D.MacFarlane at WIN02

Prospects for Measuring γ

> $D^*\pi$ decays to extract $sin(2\beta + \gamma)$

- CPV in mixing/decay $B^0 \to D^{*-}\pi^+ \leftrightarrow \overline{B}^0 \to D^{*-}\pi^+$ (DCS)
- clean theoretically,
 - pure tree amplitudes no penguin pollution
- ...but time-dependent CP asymmetries at the few % level
- $> D^{0}K^{+} \text{ where } D^{0}, \overline{D}^{0} \to f_{CP} \text{ decays to extract } \gamma$ $_{\circ} \text{ interference } B^{+} \to \overline{D}^{0}K^{+} \longleftrightarrow B^{+} \to D^{0}K^{+}$

First Look at BELLE

Testing the Standard Model

Assumes |Vcb| ~ 3% and |Vub| ~ 10%

- Much experimental and theoretical work underway to achieve this
 - New results on inclusive/exclusive semileptonic decays
 - Will be entering an era of very large tagged samples
- > Assumes Δm_s known to 0.2% from Tevatron

The TEVATRON

Run 2 started

- Improved CDF and Dzero detectors
- Expect 300 pb-1 by end of 2002 and 15 fb-1 by 2007

 $\begin{array}{l} \succ \textbf{Examples of specific} \\ \textbf{physics strengths} \\ B_s \text{ mixing} \\ B_s \rightarrow K\pi, KK \\ B_s \rightarrow D_s K \\ B_s \rightarrow J / \psi\phi \end{array}$

Summary

- Have entered era of B Factories, with a renaissance of experimental and theoretical activity on B physics
- Motivation for these and upcoming facilities is a definitive test of CP violation in the Standard Model
- > July 2001 saw the beginnings of this program

Unambiguous observation of [CP violation in the B system

 $\sin 2\beta = 0.79 \pm 0.10$

World average dominated by BELLE and BABAR

But...still working towards a definitive consistency test of Standard Model expectations and constraints

Complementary approaches of the different *B* factories will be needed to tackle this challenge

Current Experimental Constraints

Based on Höcker *et al.*, Eur.Phys.J. **C21**, 225 (2001) (many other recent global CKM matrix analyses)

Constraints from $b \rightarrow u \& b \rightarrow c$

Constraints from Mixing

 $\begin{array}{l} \left|V_{td}\right| \mbox{ from } \Delta m_{B_d} \mbox{ (}B^0 \overline{B}{}^0 \mbox{ mixing)} \\ \mbox{o Limited by uncertainty on } f_{B_d} \ \sqrt{\hat{B}_{B_d}} \end{array}$

 $\Delta m_{B_d} = (0.487 \pm 0.014_{(stat+syst)}) \text{ ps}^{-1}$

$$\begin{split} & \blacktriangleright |V_{ts}| / |V_{td}| \text{ from } \Delta m_{B_d} \\ & \text{ and limit on } \Delta m_{B_s} \ (B_s \overline{B}_s \text{ mixing}) \\ & \text{o limited by uncertainty on} \\ & \xi = f_{B_s} \sqrt{\hat{B}_{B_s}} / f_{B_d} \sqrt{\hat{B}_{B_d}} \\ & \text{ (computed at the 5\% level} \\ & \text{ from the lattice}) \end{split}$$

$$\Delta m_{B_s} > 15 \, \text{ps}^{-1}$$
 @ 95% CL

Indirect Constraints on Unitarity Triangle

 CP-averaged measurements: J > 0 at ~ 1.7 σ

 Evidence for CP violation from CP-averaged observations

 consistent with CP violation in kaon system (given by |ε_K|)

Constraints on apex of UT and *CP*-violating observables:

$$\sin 2\beta \in [0.47 \leftrightarrow 0.89]$$

$$\sin 2\alpha \in [-1 \leftrightarrow 0.5]$$

$$\gamma \in [34^{\circ} \leftrightarrow 82^{\circ}]$$

 $B \rightarrow K\pi$, $\pi\pi$ at BELLE

Vertex and Δt Reconstruction

$$\Delta z = \beta \gamma \gamma_{rec}^* c \Delta t + \gamma \beta_{rec}^* \gamma_{rec}^* \cos \theta_{rec}^* c(\tau_{B^0} + |\Delta t|)$$

∆t resolution function measured directly from data

Flavour Tagging Performance

The large sample of fully reconstructed events provides the precise determination of the tagging parameters required in the CP fit

	Tagging category	Fraction of tagged events ε (%)	Wrong tag fraction w (%)	Q = ε(1-2w) ² (%)	
	Lepton	10.9 ±0.3	<i>8.9 ± 1.3</i>	7.4 ± 0.5	
	Kaon	35.8 ±0.5	17.6 ± 1.0	15.0 ± 0.9	
	NT1	7.8 ±0.3	22.0 ± 2.1	<i>2.5 ± 0.4</i>	
	NT2	13.8 ±0.3	35.1 ± 1.9	1.2 ± 0.3	
	ALL	68.4 ±0.7		26.1 ± 1.2	
Highes	t "efficiency"	The error on $\sin 2\beta$ an "the quality factor" Q $\sigma(\sin 2\beta)$	Smallest mistag f	raction	

sin2 likelihood fit

Combined unbinned maximum likelihood fit to Δt spectra of flavor and CP sample

Fit Parameters

sin2 β Mistag fractions for B⁰ and B⁰ tags Signal resolution function Empirical description of background Δt

B lifetime fixed to the PDG value Mixing Frequency fixed to the PDG value Driven by

tagged CP samples

tagged flavor sample

Global correlation coefficient for sin2b: 13% Different Δt resolution function parameters for Run1 and Run2

45 total free parameters

 ✓ All ∆t parameters extracted from data

8

20

✓ Correct estimate of the error and correlations

Belle Flavour Tagging

Check "null" control sample

Input B_{flav} sample to CP fit

Systematic Errors on $sin2\beta$

- > Signal resolution and vertexing = 0.03
 - Resolution model, outliers, SVT residual misalignment
- > Tagging = 0.03
 - Studies of possible differences between B_{CP} and B_{flavor} samples

> Backgrounds = 0.02 (overall)

- Signal probability, peaking background, CP content of background
- $_{\rm 0}~$ Total 0.093 for J/ Ψ K_L channel; 0.11 for J/ Ψ K*0

> Total = 0.05 for full sample

	Ks	K	Kto	Full
Total Sys	0.049	0.104	0.162	0.049
Total Stat	0.151	0.340	1.01	0.137

Systematic Errors on $sin2\beta$

	Vertex algorithm	±0.04
	Flavor tagging	±0.03
	Resolution function	±0.02
	<i>K_L</i> background fraction	±0.02
	Background shapes	±0.01
	Δm_d and τ_{B0} errors	±0.01
	Total	±0.06

BEL

Fit Results

Extended ML fit to the BFs and CP done simultaneously:

- 5 tagging categories (leptons, K, NT1, NT2, untagged)
- 8 event species (Sig and Bkg: $\pi^+\pi^-$, $K^+\pi^-$, $K^-\pi^+$, K^+K^-)
- Discriminating variables (m_{ES}, ΔE , F, θ_{c1} , θ_{c2} , Δt)
- Dilutions, R(Δ t) for the signal taken from sin2 β analysis
- $\circ \Delta m_d$, B⁰ lifetime fixed as in sin2 β analysis
- $\circ~$ R($\Delta t)$ for the background taken from sidebands in m_{ES} distribution

$$\begin{split} S(\pi^{+}\pi^{-}) &= 0.03^{+0.53}_{-0.56} (\text{stat}) \pm 0.11 (\text{syst}) \\ C(\pi^{+}\pi^{-}) &= -0.25^{+0.45}_{-0.47} (\text{stat}) \pm 0.14 (\text{syst}) \\ A_{\text{CP}}(\text{K}^{\pm}\pi^{\mp}) &= -0.07 \pm 0.08 (\text{stat}) \pm 0.02 (\text{syst}) \end{split}$$

BABAR hep-ex/0110062

