WIN02: January 24, 2002

BEAUTIFUL MIRRORS AND

ELECTROWEAK PRECISION MEASUREMENTS

C.E.M. Wagner

Argonne National Laboratory

- 1. Introduction
- 2. $\sin^2 \theta_W$, m_H and the forward-backward b-asymmetry.
- 3. Beautiful Mirrors
- 4. Fit to the Precision Electroweak Data
- 5. Unification of Couplings and Proton Decay
- 6. Collider Physics

Based on work done with D. Choudhury and T. Tait, hep-ph/0109097, Phys. Rev. D, in press

Introduction

The Standard Model provides an excellent fit to the precision electroweak observables, with a notable exception:

$$A_{FB}^{b} = 0.0990 \pm 0.0017; \quad A_{FB}^{b}(SM) = 0.1039,$$

A 2.9 σ discrepancy. On the other hand, a related quantity measured at SLC, A_b agrees within 1σ !

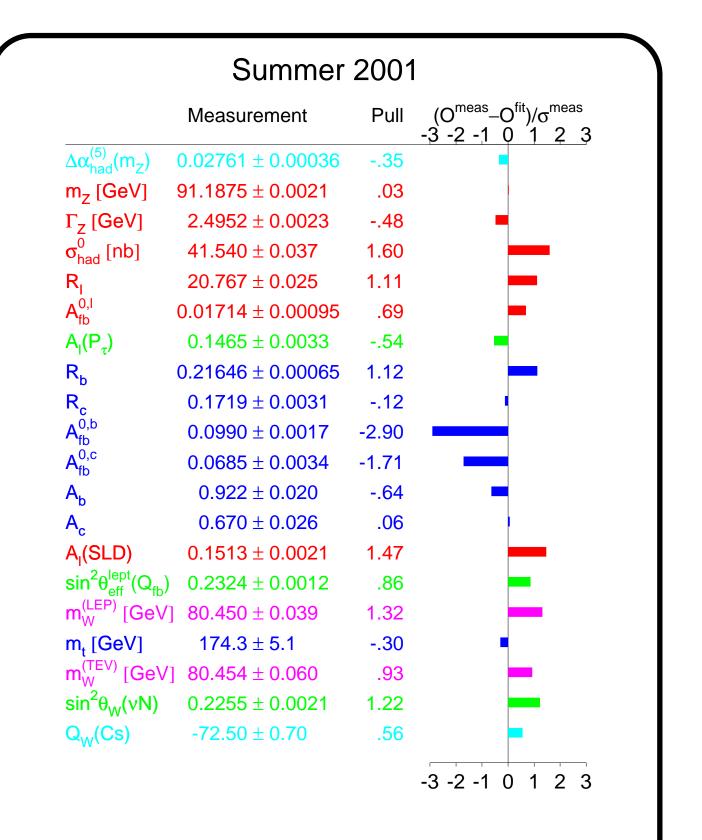
$$A^b_{FB} = \frac{3}{4}A_bA_e$$

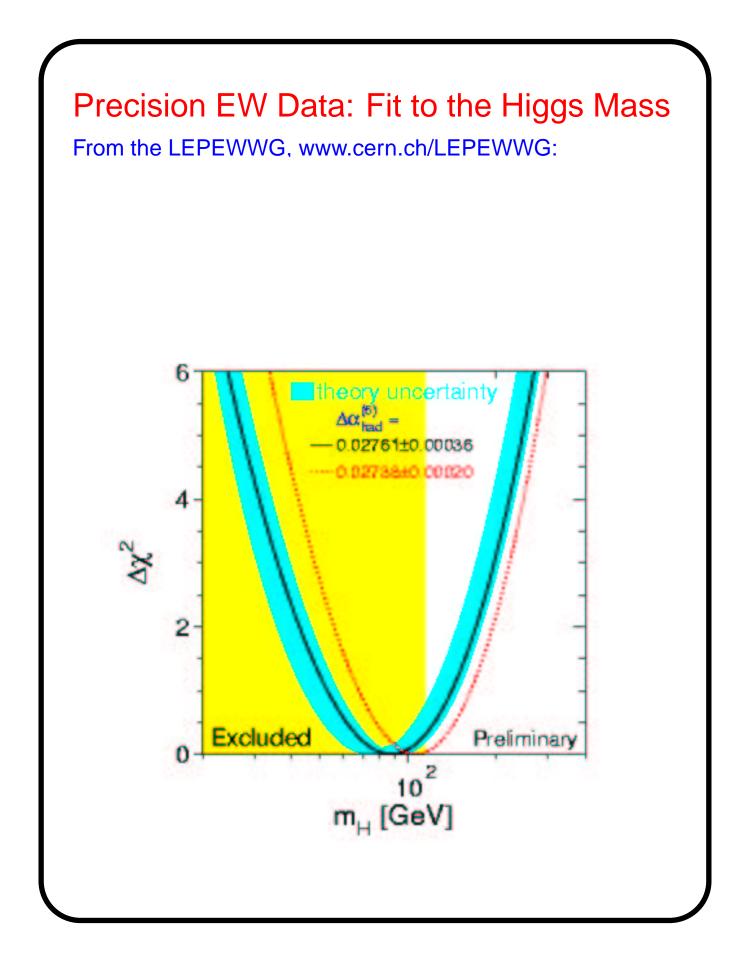
Also,

 $R_b = 0.21646 \pm 0.00065; \quad R_b(SM) = 0.2157$

Possible solutions

- 1. Systematics errors.
- 2. Statistical fluctuation.
- 3. New Physics.





The Problem

What happens if we ignore the hadronic asymmetries,

$$\left. \sin^2 \theta_W^{\text{eff}} \right|_{\text{hadronic}} = 0.2324 \pm 0.00029$$

and consider only

$$\left. \sin^2 \theta_W^{\text{eff}} \right|_{\text{leptonic}} = 0.23114 \pm 0.0002 ?$$

The EW-fit value of m_H is already below the direct lower bound. Now it is pushed to lower values ($m_H \simeq 50$ GeV). ['Lose-lose for the SM !', M.S. Chanowitz, hep-ph/010402] Altarelli *et al.*, hep-ph/0106029 : Assume A_{FB}^b wrong! Invoke new physics to push up $\sin^2 \theta_W^{\text{eff}}\Big|_{\text{leptonic}}$ and thus m_H . This can be achieved within the MSSM, $\tilde{\nu}$'s : 55–80 GeV, \tilde{e} 's \gtrsim 95 GeV, and maybe light charginos as well.

Bottom quark couplings

The effective $Zb\bar{b}$ vertex :

$$\mathcal{L}_{Zb\bar{b}} = \frac{-e}{s_W c_W} Z_\mu \bar{b} \gamma^\mu \left[\bar{g}_L^b P_L + \bar{g}_R^b P_R \right] b$$

where $s_W \equiv \sin \theta_W$, $c_W \equiv \cos \theta_W$. At LEP:

$$R_b \equiv \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to \text{hadrons})} \simeq \frac{(\bar{g}_L^b)^2 + (\bar{g}_R^b)^2}{\sum_q \left[(\bar{g}_L^q)^2 + (\bar{g}_R^q)^2\right]}$$

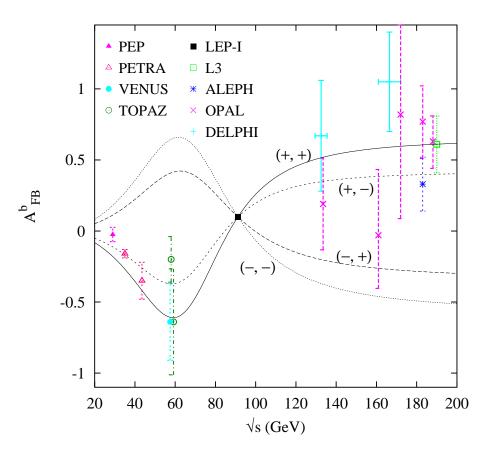
$$A_b \simeq \frac{(\bar{g}_L^b)^2 - (\bar{g}_R^b)^2}{(\bar{g}_L^b)^2 + (\bar{g}_R^b)^2}$$
$$A_\ell \simeq \frac{(g_L^\ell)^2 - (g_R^\ell)^2}{(g_L^\ell)^2 + (g_R^\ell)^2}.$$

The ellipse and the hyperbola representing the solution spaces intersect at *four* points :

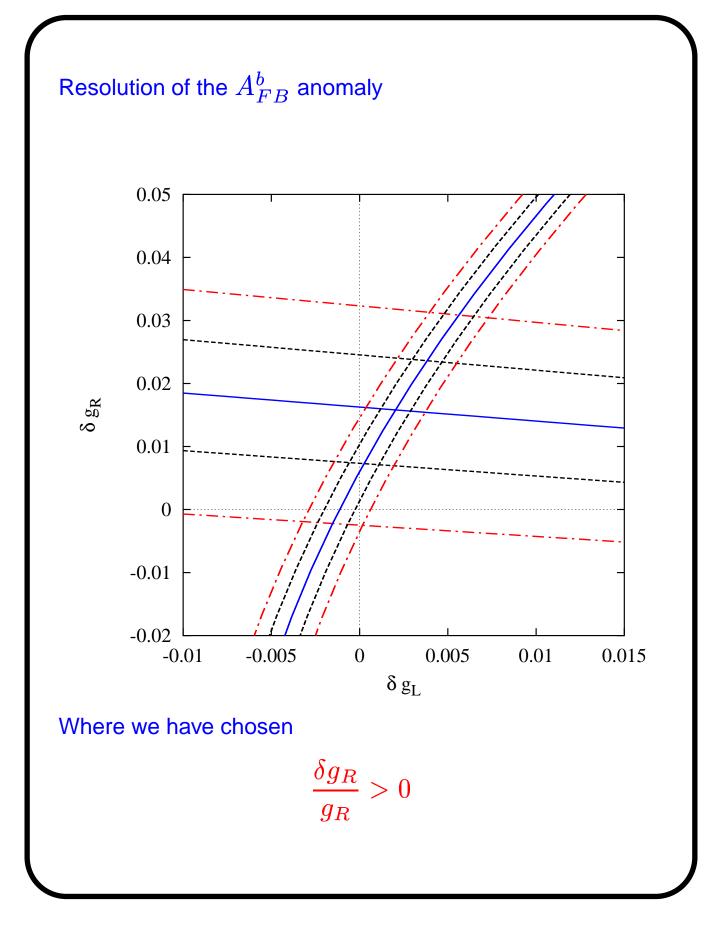
 $(\bar{g}^b_L, \bar{g}^b_R) \approx (\pm 0.992 \; g^b_L(SM), \pm 1.26 \; g^b_R(SM)) \; ,$

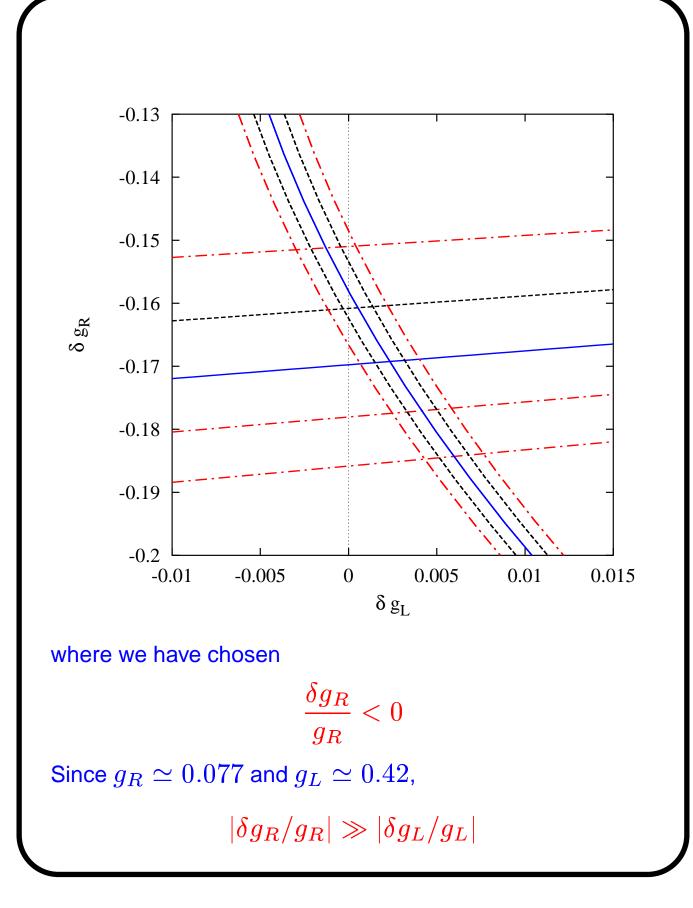
Information about the b-couplings

No experiment performed at the Z-peak can reduce the degeneracy any further. Off Z-peak : γ -mediated diagram becomes important.



 $\bar{g}_L^b \approx -g_L^b(SM)$: disallowed. $\bar{g}_R^b \approx \pm 1.26 \ g_R^b(SM)$: High-energy data inconclusive. However, measurements at LEP, 2 GeV away from Z-peak show preference towards equal sign (sign reversal is 2 σ away). Low-energy data, instead, prefers sign reversal!!





Beautiful Mirrors

Suppose there exists a charge -1/3 quark that mixes with b but not with d, s.

Mass matrix :

$$\mathcal{L}_{m_b} = -\sum_{ij} \bar{b}'_L M_{ij} b'_{jR} + \text{h.c.}, \quad M \equiv \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$

 b'_1 : ordinary *b*-quark. b'_2 : exotic *b*-quark.

Mixing matrices for the left- and right-handed quarks : diagonalization matrices for MM^{\dagger} and $M^{\dagger}M$ respectively. \implies physical states $b_{1,2}$

Note : b_2' need not have same $SU(2)\otimes U(1)_Y$ quantum numbers.

 \implies non-trivial structure for gauge currents.

Bottom-quark weak neutral Current : Third component of the isospin : $t_{3L(R)}$

$$J_{\mu}^{3} \quad (b) = \frac{e}{s_{W}c_{W}} \sum_{ij} \bar{b}_{i}\gamma_{\mu}(L_{ij}P_{L} + R_{ij}P_{R})b_{j} ,$$

$$L \equiv \begin{pmatrix} t_{3L}s_{L}^{2} - \frac{1}{2}c_{L}^{2} & -\left(t_{3L} + \frac{1}{2}\right)s_{L}c_{L} \\ -\left(t_{3L} + \frac{1}{2}\right)s_{L}c_{L} & t_{3L}c_{L}^{2} - \frac{1}{2}s_{L}^{2} \end{pmatrix}$$

$$R \equiv \begin{pmatrix} t_{3R}s_R^2 & -t_{3R}s_Rc_R \\ -t_{3R}s_Rc_R & t_{3R}c_R^2 \end{pmatrix}$$

- Flavour changing neutral currents
- $\delta g_L^b = \left(t_{3L} + \frac{1}{2}\right) s_L^2$, $\delta g_R^b = t_{3R} s_R^2$,
- Right handed component of the exotic cannot be a $SU(2)_L$ singlet.

Possible Quark Representions In principle, b'_L and b'_R : any (and inequivalent) representation.

- Anomaly cancellation: vector-like assignment most economic choice.
- Also vector-like fermions \implies relatively small contribution to the oblique electroweak parameter S.
- Nonzero mass terms connecting ordinary b with exotic necessary.
- Demand: electroweak symmetry breaking only through SU(2) doublet Higgs boson \implies Choice for the exotic limited to a SU(2) singlet and two varieties each of SU(2) doublets and triplets.
- $t_{3R} \neq 0$ eliminates the singlet and one of the triplets as source for δg_R^b .

Choices : $\Psi_{L,R} = (3, 2, 1/6)$, (3, 2, -5/6) and (3, 3, 2/3).

Standard Mirrors

$$\Psi_{L,R}^{T} = (\chi, \omega) \equiv (3, 2, 1/6)$$

Most general Yukawa and mass term :

$$egin{aligned} \mathcal{L} \supset & - & \left(y_1 \overline{Q'_L} + y_2 \overline{\Psi_L}
ight) b'_R \phi - \left(x_1 \overline{Q'_L} + x_2 \overline{\Psi'_L}
ight) t'_R ilde{\phi} \ & - & M_1 \overline{\Psi'_L} \Psi'_R + h.c., \end{aligned}$$

 Ψ'_L and Q'_L have same quantum numbers : $\Longrightarrow \overline{Q'_L} \Psi_R$ can be trivially rotated away. In the basis (b', ω') , we then have a mass matrix of the form

$$M_b = \begin{pmatrix} Y_1 & 0 \\ Y_2 & M_1 \end{pmatrix} , \quad Y_i \equiv y_i \langle \phi \rangle$$

and an analogous one for the top. Assume that the mass matrices are real. $Y_1 \ll Y_2 < M_1$

$$m_b \approx Y_1 / \sqrt{1 + \frac{Y_2^2}{M_1^2}}, \quad \tan \theta_R^b \approx$$

 $m_\omega \approx (M_1^2 + Y_2^2)^{1/2}, \quad \tan \theta_L^b \approx$

$$\operatorname{an} \theta_R^b \approx \frac{-Y_2}{M_1}$$
$$\operatorname{an} \theta_L^b \approx \frac{-Y_1Y_2}{M_1^2 + Y_2^2}.$$

- $\omega'_L \equiv b'_L$ and $\chi'_L \equiv t'_L$ \implies gauge current in *L*-sector unmodified.
- FCNC's in both b_R and t_R sectors.
- $\delta g_R^b < 0$, (but $g_R^b(SM) > 0$) Large negative correction that takes us to the second allowed region in the parameter space. For example,

$$Y_2 \approx 0.7 M_1 \implies \delta g_R^b = \frac{-s_R^2}{2} \approx -0.165$$

results in 1σ agreement for both $A_{FB}^b R_b$.

- Right-handed charged currents! $b \rightarrow s\gamma$ measurement requires $s_R^b s_R^t < 0.02$. Larios, Perez and Yuan ' 99 Since the y's and x's are independent, could set $x_2 = 0$. \Longrightarrow No mixing in top-sector and x_1 is the usual top Yukawa coupling.
- Tevatron limits on exotic quarks : $M_1\gtrsim 200~{
 m GeV}.$

Standard Mirrors : The fit

- Large mixing in the *b*-sector: Large corrections to parameters S, T and U. For $Y_2 \approx 0.7 M_1$: $\Delta T(M_1 = 200 \text{ GeV}) = 0.35,$ $\Delta T(M_1 = 250 \text{ GeV}) = 0.54$ $\Delta S \simeq 0.1$ and increases very slowly with $M_1 \Delta U$ small.
- Data \implies non-zero δg_L^b as well. Also large ΔT and g_R^b tend to increase Γ_{had} and Γ_{tot} .
- Solution: Introduce a SU(2)-singlet quark as well

$$\xi'_{R,L} \equiv (3, 1, -1/3)$$

Mass matrix modified. In the (b', ω', ξ') basis,

$$M_b = \begin{pmatrix} Y_1 & 0 & Y_3 \\ Y_2 & M_1 & 0 \\ 0 & 0 & M_2 \end{pmatrix} , \quad Y_i \equiv y_i \langle \phi \rangle$$

 $(M_b)_{31}$: could be trivially rotated away. $(M_b)_{23}$ and $(M_b)_{32}$: minor effects if small.

• Left-handed mixing angle : $s_L \simeq {Y_3 \over \sqrt{Y_2^2 + M_2^2}}$,

$$\delta g_L^b = \frac{s_L^2}{2}$$

Hence, s_L (or Y_3) must be relatively small. Main effect of s_L : reduce Γ_b and thus $\Gamma_{had} \Longrightarrow$ should improve fit. Oblique corrections still dominated by $b_R - \omega_R$ mixing. Precision observables have epsilon dependences:

$$\begin{split} \Gamma_Z &\simeq 2.489 \; (1+1.35 \; \epsilon_1 - 0.46 \; \epsilon_3 + ...) \; \text{GeV} \\ \sin^2 \theta_l^{\text{eff}} &\simeq 0.2310 \; (1+1.88 \; \epsilon_3 - 1.45 \; \epsilon_1) \\ \frac{m_W^2}{m_Z^2} &\simeq 0.7689 \; (1+1.43 \; \epsilon_1 - \epsilon_2 - 0.86 \; \epsilon_3) \; , \end{split}$$

$$\epsilon_1 = \alpha T = 5.6 \times 10^{-3}$$
$$-\epsilon_2 = \frac{\alpha U}{4s_W^2} = 7.4 \times 10^{-3}$$
$$\epsilon_3 = \frac{\alpha S}{4s_W^2} = 5.4 \times 10^{-3}$$

[Numbers for SM with $m_{\,t}\,=\,174.3$ GeV and $m_{\,H}\,=\,115$ GeV]

Additional dependence on $\alpha(M_Z)$ and $\alpha_s(M_Z)$, $\alpha(M_Z)$: $\Delta \alpha_{\rm had}^{(5)} = 0.02761$, $\alpha_s(M_Z)$: allowed to float around 0.118.

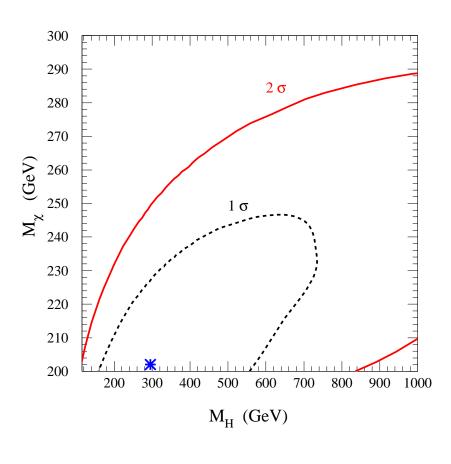
- Extra Quarks: Large positive corrections to $\epsilon_1 \equiv T$
- Heavy Higgs: Large negative corrections to *ε*₁. Positive
 *ε*₃ correction.
- Correlation between quark and Higgs masses.

Best fit : Standard Mirrors

$$M_1 = 200 \text{ GeV}$$
$$m_H = 295.4 \text{ GeV}$$

$$Y_2 = 143 \,\mathrm{GeV}$$
$$\sin^2 \theta_L^b = 0.00811$$

 $\alpha_s(M_Z) = 0.116$



Observable	Exp. Value	Best fit	Pull
Γ_Z	2.4952 ± 0.0023	2.49885	-1.59
R_ℓ	20.767 ± 0.025	20.7337	1.33
A_e	0.1465 ± 0.0033	0.14730	-0.24
A_ℓ^{FB}	0.01714 ± 0.00095	0.01627	0.91
σ_h	41.54 ± 0.037	41.482	1.56
R_b	0.21646 ± 0.00065	0.21597	0.76
R_c	0.1719 ± 0.0031	0.17225	-0.11
A_c^{FB}	0.0685 ± 0.0034	0.07375	-1.55
A_b	0.922 ± 0.02	0.9060	0.80
A_c	0.67 ± 0.026	0.6676	0.09
m_W/m_Z	0.778381 ± 0.00064	0.778397	-0.025
A_b^{FB}	0.099 ± 0.0017	0.100091	-0.64
$A_{LR}(SLD)$	0.1513 ± 0.0021	0.147297	1.91
M_t	174.3 ± 5.1	172.667	0.32
CW(Ces)	-72.5 ± 0.7	-73.2261	1.04

Top-less Mirror Quark Doublets

 $\Psi_{L,R}^T = (\omega, \chi) \equiv (3, 2, -5/6), \qquad \xi_{L,R}^T \equiv (3, 1, -1/3)$

Mass matrix [basis (b',ω',ξ')] similar to the earlier one.

$$M_{b} = \begin{pmatrix} Y_{1} & 0 & Y_{L} \\ Y_{R} & M_{1} & 0 \\ 0 & 0 & M_{2} \end{pmatrix} , \quad Y_{i} \equiv y_{i} \langle \phi \rangle$$

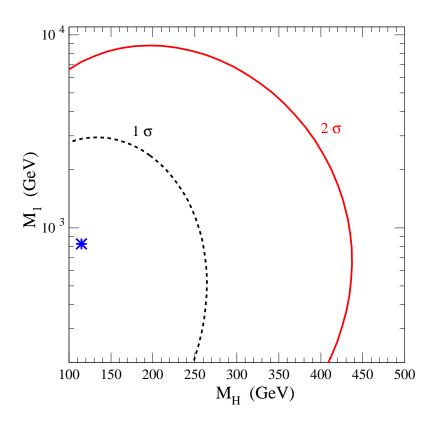
 $(M_b)_{12}$: prevented by gauge inv, $(M_b)_{31}$: can be rotated away, $(M_b)_{23}$ and $(M_b)_{32}$: minor effects

$$s_L \simeq \frac{Y_L}{\sqrt{Y_L^2 + M_2^2}}$$
 $s_R \simeq \frac{Y_R}{\sqrt{Y_R^2 + M_1^2}}$
 $\delta g_L^b = \frac{s_L^2}{2}$ $\delta g_R^b = + \frac{s_R^2}{2}$

• Positive $\delta g_R^b \Longrightarrow$ small s_R .

- EW symmetry breaking terms \ll gauge inv masses. \implies Small corrections to S, T, U
- But, larger corrections needed for m_H to be in the experimentally allowed range: Heavy exotics (doublets) while light Higgs.

Best fit : Top-less Mirrors $M_1 = 825 \text{ GeV}$ $Y_R = 160 \text{ GeV}$ $m_H = 115 \text{ GeV}$ $Y_L = 15 \text{ GeV}$ $\alpha_s(M_Z) = 0.116$ $M_t = 176.04 \text{ GeV}$



Observable	Exp. Value	Best fit	Pull
Γ_Z	2.4952 ± 0.0023	2.4971	-0.88
R_ℓ	20.767 ± 0.025	20.7443	0.63
A_{e}	0.1465 ± 0.0033	0.1487	-0.61
A_ℓ^{FB}	0.01714 ± 0.00095	0.01658	0.59
σ_h	41.54 ± 0.037	41.482	1.56
R_b	0.21646 ± 0.00065	0.21613	0.50
R_c	0.1719 ± 0.0031	0.17225	-0.11
A_c^{FB}	0.0685 ± 0.0034	0.07451	-1.7
A_b	0.922 ± 0.02	0.9003	1.0
A_c	0.67 ± 0.026	0.6682	0.07
m_W/m_Z	0.778381 ± 0.00064	0.7778	0.92
A_b^{FB}	0.099 ± 0.0017	0.1004	-0.82
$A_{LR}(SLD)$	0.1513 ± 0.0021	0.148685	1.24
M_t	174.3 ± 5.1	176.046	-0.34
CW(Ces)	-72.5 ± 0.7	-73.1872	0.98

Collider Signatures

Shall concentrate on <u>Tevatron</u>:

Run I : Exotic b heavier than 199 GeV

 $\chi
ightarrow b + W^+$ (Usual t' search) : Should be found

If ω light enough, $\omega \rightarrow b + Z$

 $\begin{array}{l} \underline{\text{Standard Mirrors}}\\ \text{68.0\% C.L.}:\, M_\chi \lesssim 245 \; \text{GeV}, \;\; M_\omega \lesssim 300 \; \text{GeV}\\ \text{99.5\% C.L.}:\, M_\chi \lesssim 300 \; \text{GeV}, \;\; M_\omega \lesssim 370 \; \text{GeV} \end{array}$

Run II with 1 fb⁻¹ : $m_Q \lesssim 320 \text{ GeV} \Longrightarrow$ larger than top sample in Run I

LC: $e^+ + e^- \rightarrow \overline{b} + \omega \ (b + \overline{\omega}) \rightarrow b + \overline{b} + Z \text{ LC may}$ even measure s_R . Singlet (mass not dertermined well) : $\xi \rightarrow b + Z, \qquad \omega + Z \ [\text{nonzero} \ (M_b)_{23}]$ LHC should be able to see all new quarks !

More on Collider Signatures

In the Top-less model, the χ -quark signatures will be similar to that of the top quark, but decaying to a wrong sign W,

$$\chi
ightarrow ~b~+~W^{-}$$

The ω and χ signatures similar to the Standard Mirror case.

FCNC somewhat suppressed. Due to the larger masses, only LHC is certain to find the new quarks.

Higgs phenomenology:

In Standard Mirror case, if $m_H>m_\omega+m_b$, new decay channel opens. If $m_H>2\omega$, two more channels open, with

$$\frac{BR(H \to \omega \bar{\omega})}{BR(H \to \omega \bar{b})} \simeq \tan^2 \theta_R$$

These will suppress the $H \to ZZ$ Branching Ratio.

In the Top-less scenario, Higgs carries standard phenomenology.

Unification of Couplings: Standard Mirrors In SM (for $n_H = 1$), $\alpha_s(\mu)$ and $\alpha_2(\mu)$ meet at $\sim 10^{17}$ GeV.

But $\alpha_1(\mu)$ crosses them at a much lower scale. We do not assume supersymmetry though. How to protect light masses? Perhaps invoke extra gauge symmetry: Top-color, Top-flavor, Bottom-color, Compositeness

Shall do only a one-loop analysis. Will not take threshold effects into account. beta-function coefficients:

$$b_3 = -11 + \frac{4}{3}n_g + 2$$

$$b_2 = \frac{-22}{3} + \frac{4}{3}n_g + \frac{n_H}{6} + 2$$

$$b_1 = \frac{4}{3}n_g + \frac{n_H}{10} + \frac{2}{5}$$

where n_g is number of generations and n_H is number of Higgs doublets.

Since $\delta b_1 < \delta b_2 = \delta b_3 \Longrightarrow \alpha_1$ crosses the others much later.

	Average M_{GUT}	Discrepancy
$n_H = 1$	$5 \times 10^{16} { m ~GeV}$	3%
$n_H = 2$	$2 imes 10^{16} { m ~GeV}$	1%
$n_H = 3$	$1 \times 10^{16} { m ~GeV}$	3%

Small differences.

Threshold effects? m_{Pl} suppressed operators? Good feature: No dimension five operators leading to proton decay.

Large M_{GUT} : dim-6 operators well suppressed.

However, heavy Higgs \Longrightarrow Landau pole well below $M_{GUT}.$ Give up ?

Unification of Couplings : Top-less Beauties.

Higgs is light \implies No Landau-pole problem. beta-function coefficients:

$$b_{3} = -11 + \frac{4}{3}n_{g} + 2$$

$$b_{2} = \frac{-22}{3} + \frac{4}{3}n_{g} + \frac{n_{H}}{6} + 2$$

$$b_{1} = \frac{4}{3}n_{g} + \frac{n_{H}}{10} + \frac{18}{5}$$

 $\delta b_1 > \delta b_2 = \delta b_3 \Longrightarrow \alpha_1$ crosses the others much earlier. Unification problem worsened. Note: doublets $\subset \mathbf{24}$, singlets $\subset \mathbf{5} + \mathbf{\overline{5}}$ of SU(5).

(Everything in adjoint of $SU(6) \subset E_6$)

Complete the representations

(" Gluino", " Wino", " Bino") and " Higgsino"

and we are back at the SM situation.

Unification of Couplings: Hybrid Model

- Complete 24 of fermions at the weak scale, together with the standard mirror doublet and singlet quarks. (All these fields are contained in the adjoint of E_6 .)
- *b*-quark mixes mainly with the top-less doublet (and singlet).
- Higgs tends to be light \implies No Landau-pole problem.
- Standard doublet: light but virtually no mixing with b.
- Unification of Couplings OK ! Not affected by complete representations.

"Gaugino"-like fields: "Gluino": Unless new fields added, very long lived or even stable.

"Wino", "Bino" : could mix with leptons \implies either a discrete symmetry (" *R*-Parity") or very small Yukawa's.

 Introduction of new Higgs doublet (slepton): correct coannihilation rate for "Bino" as a Dark Matter candidate.

Conclusions

- A^b_{FB} creates a problem in the otherwise perfect SM fit to the precision electroweak data.
- Solution: Either we ignore it → New physics preferred, or, if we take it into account, new exotic quarks can improve dramatically the fit.
- Standard Beautiful Mirror Quarks: Improve the fit, implying light quarks and a relatively heavy Higgs.
- Top-less Beautiful Mirror Quarks: Improve dramatically the fit, implying a light Higgs, with SM properties, and heavy quarks.
- Exciting New phenomenology at near future Colliders !
- Unification of Couplings at high scales with no proton decay achievable within the Beautiful Mirror Framework !
- Open Problem : Electroweak Symmetry Breaking.