

View of LEP Experiments

Spontaneous Symmetry Breaking

Two Primordial Gauge Interactions:

$$\partial_{\mu} \rightarrow \partial_{\mu} + ig' \frac{Y}{2} B_{\mu} + igT_i W^i_{\mu}$$

Hypercharge(Y) Left-Handed Isospin(T) U(1)_v Symmetry SU(2)_L Symmetry T=1**Higgs Field 1-complex doublet** $\begin{array}{c|c} T' = \frac{1}{2} & \left(\varphi^{+} \right) & \xrightarrow{C} & \left(\overline{\varphi}^{0} \right) \\ Y = 1 & \left(\varphi^{0} \right) & \xrightarrow{C} & \left(\overline{\varphi}^{0} \right) \end{array}$

Properties of the Physical Vacuum

Is the Z just a massive W^0 ?

If isospin (*T*) were an unbroken symmetry,

$$\begin{array}{ccc} T = 0 & e_R^- & \xrightarrow{not allowed} & T = 1 & W^0 \\ T = 0 & e_L^+ & \end{array}$$

The measurement of $e_R^- e_L^+ \to Z$ gives us $\sin^2 \theta_W$

LEP Luminosity → Higgs Search

Pushing LEP to its Limit

Standard Model Higgs Production

Higgsstrahlung Diagram

Production Fermions

Standard Model Processes at LEP

Combining Search Data

Search Channel Analyses

Average Signal/Background at *m*_H=115.6 GeV

Search		Expected Number of Events			
Channel	Exp.	1.0	0.5	0.1	
	Aleph	0.4	1.0	2.8	
4-Jet	Delphi	0.5	1.1	2.6	
	L3	0.2	0.5	1.1	Notable
	Opal	0.2	0.5	1.0	Analysis
	Aleph		0.3	0.9	Variation
Missing	Delphi		0.5	2.1	
Energy	L3		0.2	0.7	
	Opal		0.3	0.7	
	Aleph			2.5	
Leptons	Delphi			1.9	
(e+µ)	L3			1.6	
	Opal	<u> </u>		1.6	

Candidate Evolutions in Log(s/b)

ALEPH 4-Jet Channel

Background from Double Gluon Radiation

Cross section is reasonably well known in perturbative QCD (known to ≈20%)

Side View of Hvv Candidate

Composition of Background Estimate for Hvv Candidate

Background from Double Radiative Return

Additional photon lines imply small cross sections (known to ≈15%)

Jet Measurements

Z Peak Calibration Data in Year 2000

Visualizing Search Sensitivity

Scanning for a Higgs Boson Mass

Combined Standard Model Results

Is it Background Only?

Is it Signal + Background?

by Experiment

by Channel

Mass Resolution by Channel

Mass Resolution in $H \rightarrow WW^*$

Fermion Masses in a 1-doublet Model

1-doublet Model:

$$\varphi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} \xrightarrow{C} \varphi_c = \begin{pmatrix} \overline{\varphi}^0 \\ -\varphi^- \end{pmatrix}$$

Down-type mass

 $\langle \varphi_c \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix}$ $m_u = \frac{G_u v}{\sqrt{2}}$

Same v

8 degrees of freedom

- 3 longitudinal polarizations (W_L^{\pm}, Z_L)

leaves 5 Higgs bosons: h, H, A, H^{\pm}

Production of Higgs Bosons in the Minimal Super Symmetric Model

Scanning for the MSSM

Higgs' Quest

LEP (Geneva, Switzerland)

Fermilab (Chicago, USA)

Tevatron Run II In progress LEP Dismantling November 2000

6 years

LHC

THE LARGE HADRON COLLIDER

Startup of LHC 2006 or later

Indirect Higgs Search

