

What Else Can SNO Do?

Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos Baryon Number Non-Conservation

21-25 January 2002 WIN 2002

The SNO Detector

1000 tonnes D₂O (99.92% pure)

1700 tonnes of internal H_2O

9456 8" diameter PMTs

D₂O permits neutrino detection by:

- charged current (CC) break up of D
- elastic scatter (ES) of e⁻
- neutral current (NC) break up of D 3 NC detection phases

21-25 January 2002 WIN 2002

Muons

21-25 January 2002 WIN 2002

WIN 2002

Muon Zenith Angle Distribution

Muon Zenith Angle Distribution

Depth vs. Vertical Intensity Standard Rock 10^{-9} Empirical Fréjus fit parameterization of LVD fit flux vs depth: 'ACRO fit NO Fil $I(x) = A(x_0/x)^2 exp(-x/x_0)$ SNO Data (depth corrected) 10^{-10} Vertical Intensity (µ/cm²s/sr) TILL 10^{-11} 10^{-12} the flux 7000 8000 9000 10000 11000 120006000 Depth (hg/cm^2)

Measured muon flux tells us our detector is working for high energy events and that we know how to model

21-25 January 2002 **WIN 2002**

Muon Flux vs. Depth

21-25 January 2002 WIN 2002

Muon Zenith Angle

- atmospheric neutrino signal seen well above horizon
- atmospheric neutrino signal consistent with no oscillation hypothesis $(\chi^2/DOF = 6.29/6)$
- neutrino signal more consistent with SK oscillation parameters $(\chi^2/DOF = 3.90/6)$
- SNO can limit theoretical neutrino flux uncertainty (20%) in a few years

21-25 January 2002 WIN 2002

Supernovae

A massive star > 8 M $\,$ exhausts its fuel $M_{core} \sim 1.4$ M $\,$

Gravitational collapse supernova (Type II) $E_{b} \sim 3 \times 10^{53}$ ergs released ~99% of energy carried off by neutrinos Energy --> SN mechanism, v oscillations Time --> v mass, oscillations, black holes CC-NC --> v oscillations

(After SN model of Burrows et al. (1992))

21-25 January 2002 WIN 2002

Supernova Neutrino Cross Sections

21-25 January 2002 WIN 2002

Supernova Detection Simulation

	Neutrino Reaction	Туре	SNO Cou [e = 100%	nts ⁄₀]	SNO Co [Monte	ounts Carlo]
>	$\overline{\nu}_{e}$ + p _{H₂O} \rightarrow n + e ⁺	CC	329		320	
_	$v_e + d \rightarrow p + p + e^-$	CC	83		81	
3	$\overline{\nu}_{e}$ + d \rightarrow n + n + e ⁺	CC	53 (x 3)	91 [D ₂ O]	142 [salt]	110 [NCD]
	$\overline{\nu}_{e}$ + d $\rightarrow \overline{\nu}_{e}$ + p + n	NC	36	13 [D ₂ O]	30 [salt]	20 [NCD]
) -	$v_e + d \rightarrow v_e + p + n$	NC	36	14 [D ₂ O]	31 [salt]	20 [NCD]
	" ν_{μ} " + d \rightarrow " ν_{μ} " + p + n	NC	186	70 [D ₂ O]	159 [salt]	102 [NCD]
2	$v_e + e^- \rightarrow v_e + e^-$	ES	25		18	
	$\overline{\nu}_{e}$ + e ⁻ \rightarrow $\overline{\nu}_{e}$ + e ⁻	ES	9		5	
) }	" ν_{μ} " + e ⁻ \rightarrow " ν_{μ} " + e ⁻	ES	12		10	
	TOTAL SNO SN COUNTS:		875	622 [D ₂ 0] 796 [salt]	686 [NCD]

21-25 January 2002 WIN 2002

SNO Neutrino Counts

For full SNO detector and Burrows model of 100 SN at 10 kpc scaled to 1 SN

2 MHz burst capability for SNO DAQ may reveal structure in time distribution Energy spectrum will reveal neutrino content

21-25 January 2002 WIN 2002

Suernova Sensitivity

21-25 January 2002 WIN 2002

All potential solar n background

 $v_{e} + d \rightarrow e^{+} + n + n$

potential 3-fold coincidence

21-25 January 2002 WIN 2002

Neutrino/Antineutrino Cross Sections on Deuterium rrecci

BERKELEYL

20

15

From NSGK: http://nuc003.psc.sc.edu/~kubodera/NU-D-NSGK/

21-25 January 2002 **WIN 2002**

21-25 January 2002 WIN 2002

- Geophysical energy below interaction threshold
- Atmospheric $\mu^{-} \rightarrow e^{-} + \nu_{e} + \overline{\nu_{\mu}}$
- Nuclear Reactors CHOOZ, Palo Verde, KamLAND, ...
- Relic Supernovae 99% of energy in neutrinos and antineutrinos, and lots of old supernovae over the lifetime of the universe

• Solar - must invoke jumping mechanism; assume some fraction of SSM flux (12% is 1σ SNO *vs*. SSM range)

21-25 January 2002 WIN 2002

21-25 January 2002 WIN 2002

$$R_{n-fold} = R_1 (1 - exp(-R_1 t))^{(n-1)}$$

 R_{n-fold} = accidental n-fold coincidence rate R_1 = singles event rate t = coincidence window duration

We can set our sensitivity by choosing energy threshold to give a particular event rate

GUT models generally predict non-conservation of baryon number: • proton decay (τ (p --> e⁺ + π^0) > 10³³ years)

• nn oscillations ($\Delta B = 2$, 2 GeV for nn annihilation)

Best limits for $n\overline{n}$ oscillations are from neutrons bound in nucleii where nuclear effects suppress the reaction $(\tau (n - n) > 10^8 \text{ sec from } {}^{16}\text{O} \text{ in Kamiokande})$

SNO may do better for nn:

- lower muon background
- weaker nuclear suppression in ²H

Conclusion

Plenty of good other physics to be done

All topics presented will require a lot more data:

- atmospheric neutrinos: ~3 years statistics for flux model constraint
- supernova and $n\overline{n}$ oscillations: 0 to greater than detector lifetime?
- antineutrinos: ~10 events/year from expected sources unexpected sources may surprise us

Be patient Be encouraged

21-25 January 2002 WIN 2002