Charm in the CHORUS emulsion

Bart Van de Vyver (VUB, Brussels)

IIHE (Brussels), 29 April 2002

Charm in opposite-sign dimuons

- CHORUS detector & emulsion
- Automatic event location, 'analysis-driven' vertex analysis
- Net scan technique,
 'general' vertex analysis
- Automatic reconstruction and charm selection
- Semi-leptonic branching fraction
- Outlook

Neutrino charm production

Previous experiments

 CDHS (CERN WBB)
 $9922 \ \mu^{-}\mu^{+}$, $2123 \ \mu^{+}\mu^{-}$ events
 Zeitschr. Phys. C (1982) 19-31

 CCFR (NuTeV)
 $5044 \ \mu^{-}\mu^{+}$, $1062 \ \mu^{+}\mu^{-}$ events
 Zeitschr. Phys. C (1995) 189-198

 CHARMII (CERN WANF)
 $4111 \ \mu^{-}\mu^{+}$, $871 \ \mu^{+}\mu^{-}$ events
 Eur. Phys. J., C11 (1999) 19-34

 NOMAD (CERN WANF)
 $2714 \ \mu^{-}\mu^{+}$, $115 \ \mu^{+}\mu^{-}$ events
 CERN EP 2000-072, submitted to Phys.Lett.B

E531 (Fermilab, Nagoya)

131 charm events in emulsion only measurement of $D^0: D^*: D_s^*: \Lambda_c^*$ $B(c \rightarrow \mu)$ crucial for other experiments

Phys. Lett. B 206 (1988) 375-379

CHORUS detector

CHORUS emulsion

Nucl. Instr. Meth. A 447 (2000) 361-376

Automatic Scanning

Microscope layout

Microscope optics

Objective

 \oslash FOV DOF FWD NA M λ n (emulsion)

Light source

Ø FOV NA shutter/flash intensity range > 0.6 mm 0.95 up to 120 Hz 1:30

0.5 mm

1.2 μm

1.2 mm

436 nm

1.48-1.54

40x (60x,80x)

1.05

350 x 350 μ m/view

Digital filters

5 cycles/pixel \Rightarrow 2x40 Mpixel images/s

C620 implementation : Chorus note 98/9

35 assembler instructions on C620 (VLIW)

Prediction tracking

I.M.Papadopoulos, Ph.D.thesis, in preparation

Flow diagram

Scanback

25 images 100 micron thickness predicted angle

Vertex analysis

2 x 60 images 2 x 350 micron all angles up to 400 mrad

General tracking

Tracking results

CHORUS Phase II : net scan

All track segments ($\theta < 0.4 \text{ rad}$) in Fiducial volume: 1.5 × 1.5 mm² × 8 plates Offline analysis of emulsion data

Charm selection

- matching to electronic detectors
- track and vertex fitting (MCS)
- displaced vertex with at least one or more matched tracks OR
- isolated, matched track with large impact parameter

High purity selection

	original	loose	tight
selected	338	291	261
charm	261	242	236
secondary	29	28	13
background	48	21	12
not checked	14	0	0
primary	13	5	3
e+e-	6	5	3
passing	8	6	2
fake vee	3	1	1
unrelated 2ry	4	4	3

Outlook

• D⁰ production rate

Data taking ongoing : 25k CC \rightarrow 200k CC Improved selection : purity 65% \rightarrow 90%

No need for manual?

Inclusive charm, including charged

~ 4,000 neutrino-induced charm events Fragmentation fractions D^0 : D^+ : D_s^+ : Λ_c^+

B($c \rightarrow \mu$), V_{cd}, s(x), ...

Associated charm production

Background evaluation based on CHORUS data and FLUKA Improved selection : efficiency 1% \rightarrow 25%

Exclusive channels

Proton identification MCS momentum measurement Σ^{\pm} detection

 Λ_c absolute BR, QE Λ_c production, $D^{*+} \rightarrow D^0 \pi^+$

The CKM matrix

Measuring $V_{\rm cd}$

Difficulties

 $\propto \frac{d(x) |V_{cd}|^2 + s(x) |V_{cs}|^2}{d(x) + s(x)}$ $\propto \frac{|V_{cd}|^2}{1 + s/d} + \frac{s|V_{cs}|^2}{d + s}$ $\propto |V_{cd}|^2$

 $s \rightarrow 0$ for large $x_{Bjorken}$

No antineutrino data in emulsion (5 % contamination in neutrino mode) No invariant mass reconstruction or particle ID (inclusive analysis) Biases in the sample of vertices located in Nagoya (CERN microscopes) Too low statistics for the time being (Phase II rescan of all events) Hadronic decays more interesting than muonic ones, but harder (Net scan both in Nagoya and at CERN)

A microscope view

Plates are orthogonal to the neutrino beam

An AgBr emulsion grain has about 0.5 mm diameter

Large angle nuclear fragments (if any) are seen as a 'star' of heavy ionizing 'tracks' in the vertex view

Interaction tracks are seen as the coincidence of a single grain from each view