Kaon Physics

Augusto Ceccucci/CERN Weak Interactions and Neutrinos 2002 Christchurch (NZ), 21-26 January, 2002

•Kaons have strongly influenced the construction of the Standard Model (e.g.):

-The θ-τ puzzle → stimulus for the Lee-Yang Parity Violation Conjecture → V-A structure of weak interactions
-Associated production → Strangeness → Quark Model
-Absence of FCNC → GIM mechanism and charm quark
-Discovery of CP violation → KM description → third family
•All of the above was New Physics at the time

1

Neutral kaons: Production
$$K^0 \quad \overline{K}^0$$

Decay $K_s \quad K_L$
 $K_L \rightarrow \pi^+ \pi^-$ CP-Violation (1964)
 $K_1 = (K^0 + \overline{K}^0) / \sqrt{2}$ CP even $\rightarrow \pi\pi$
 $K_2 = (K^0 - \overline{K}^0) / \sqrt{2}$ CP odd $\rightarrow \pi\pi\pi$
 $K_s = (K_1 + \varepsilon K_2) / \sqrt{1 + \varepsilon^2}$
 $K_L = (K_2 + \varepsilon K_1) / \sqrt{1 + \varepsilon^2}$

 $\varepsilon \simeq 2.27 \times 10^{-3}$ arg(ε) $\simeq \tan^{-1} \frac{2\Delta m}{\Delta \Gamma}$

CP-Violation in Semi-leptonic Decays

21-26 January, 2002

T-Violation in Neutral Kaon mixing

(refer to Eur. Phys. J. C 22 (2001) for detailed description of T-Violation and CPT-Conservation CPLAR tests in semi-leptonic neutral kaon decays by CPLEAR)

CP-Violation in $K_L \rightarrow \pi^+\pi^-e^+e^-$

Prediction Heiliger and Sehgal 1992 Large CP asymmetry in the angle ϕ between the $\pi^+\pi^-$ and e^+e^- planes: $|A(\phi)|\approx 14\%$

• $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ main contributions:

WIN02 Christchurch, NZ

21-26 January, 2002

Direct CP Violation in 2π Decays

21-26 January, 2002

WIN02 Christchurch, NZ

6

CKM description of CP-Violation

Need a complex factor in the quark-quark current $J_{\mu} = \overline{U}\gamma_{\mu}(1-\gamma_5)D$

 $\begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad N_g = 2 \qquad N_{phase} = 0 \implies \text{No CP-Violation}$ $N_g = 3 \qquad N_{phase} = 1 \implies \text{CP-Violation Possible}$ Unitarity Conditions: $\sum_{i=u,c,t} V_{ij}V_{ik} * = \sum_{i=u,c,t} V_{ji} * V_{ki} = \delta_{jk}$

For $j \neq k \rightarrow 6$ triangles all with the same area

 $J_{CP}=2\times(Triangle Area)$ Is the unique CP Violation measure in SM

In Kaon Physics is convenient to write:

 $J_{CP} = Im(V_{ud} * V_{us} V_{ts} * V_{td}) = Im(\lambda_u * \lambda_t) \approx sin\theta_c cos\theta_c Im(\lambda_t)$

With θ_c = Cabibbo angle and $\lambda_{\alpha} = V_{\alpha s} * V_{\alpha d}$

21-26 January, 2002

Master Formula for
$$\varepsilon'/\varepsilon$$
 in SM (Trieste group)

$$\frac{\varepsilon}{\varepsilon} = e^{i\phi} \frac{G_F \omega}{2 |\varepsilon| \operatorname{Re} A_0} \operatorname{Im} \lambda_i \left[\Pi_0 (1 - \Omega_{IB}) - \frac{1}{\omega} \Pi_2 \right]$$

$$\omega = \frac{A(K_S \to \pi\pi, I=2)}{A(K_S \to \pi\pi, I=0)} \approx 0.045 \qquad \phi = \frac{\pi}{2} + \delta_2 - \delta_0 \approx 0^\circ$$

$$\Pi_0 = \frac{1}{\cos \delta_0} \sum_i y_i \operatorname{Re} < Q_i >_0 \qquad \Pi_2 = \frac{1}{\cos \delta_2} \sum_i y_i \operatorname{Re} < Q_i > 2$$

•1976 Ellis, Gaillard and Nanopoulos: $\epsilon'/\epsilon > 0$ is expected in the CKM description •Gluonic Pinguins can lead to large ϵ'/ϵ

Large top mass → contribution of EW Pinguins leads to cancellations
Short distance physics is in the Wilson Coefficients y_i computed to NLO (Buras et al., Martinelli et al.)

•Low energy physics in the hadronic matrix elements Q_i: eventually the may be reliably calculated in the lattice

•Current Predictions of ϵ'/ϵ in SM range from -4÷+40 ×10⁻⁴

 \Rightarrow Refer to Fabbrichesi's talk on Kaon theory

21-26 January, 2002

ε'/ε Experiments

 $R = \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^-)} \cdot \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^0 \pi^0)}$

Two experiment published precise results in 1993

•E731 FNAL Re $\epsilon'/\epsilon=(7.4\pm5.9)\times10^{-4} \Rightarrow$ no effect

•NA31 CERN Re ϵ'/ϵ =(23.0±6.5)×10⁻⁴ \Rightarrow >3.5 σ New Round: KTeV and NA48

•Simultaneous collection of the four decay modes →Detector inefficiencies drop out

•Precise magnetic spectrometer and EM calorimeter → small backgrounds from other kaon decays and good control of the decay volume

	KTEV-FNAL	NA48-CERN
Proton beam	Tevatron (800 GeV)	SPS (450 GeV)
K _S Production	Regenerator	2 nd target
K _S Identification	Center of Gravity of K	Proton tagging
K _{S,L} decay vertex dist.	MC (KL weighting as check)	K _L weighting

21-26 January, 2002

KTeV ϵ'/ϵ statistics ($\times 10^6 \text{ K}_{\text{L}} \rightarrow 2\pi^0$): 1996+1997 ≈ 2.5 (This talk) 1999 \approx 1996+1997

```
96+97a: Re ε'/ε=28.0±4.1×10<sup>-4</sup>
PRL 83 (1999)
```

21-26 January, 2002

Data Taking

NA48

- 1997-1999: ~240 days
- 2000: neutral checks
- 2001: 80 days
- ε'/ε and rare decays collected simultaneously

NA48 ε'/ε statistics ($\times 10^6 \text{ K}_{\text{L}} \rightarrow 2\pi^0$):

 $1997\approx0.5$

1998+1999 ≈ 3.3 (This talk)

2001 ≈1.4

1997: Re ε'/ε= 18.5±7.3× 10⁻⁴ PLB 465 (1999)

Beams

KTEV

NA48

Detectors: $K \rightarrow \pi^0 \pi^0$

KTeV (pure CsI)

NA48 (Liquid Kr)

Regenerator method (KTeV)

Even<u>t</u>s per 0.5 m Data Prediction Prediction without interference $40 \text{ GeV} < P_{\kappa} < 50 \text{ GeV}$ 10 4 10³ 125 130 135 155 140 145 150 distance from target (m) **Regenerator Vertex Z distribution**

 $K_1 + \rho K_S$

Advantage: The ratio of regenerated and vacuum decays is fixed by construction Feature: $\pi\pi$ from K_S-K_L interference

- It complicates the fitting
- It allows to measure $\Delta m, \phi_{+}, \phi_{00}$

 $\pi^+\pi^-$ decays from reg. (KTeV) or 2nd target (NA48) (for illustration only)

	K _s	Int.	KL
KTeV	1	1/17	1/300
NA48	1	1/500	1/100000

Regenerator Scattering (KTeV)

Background to $\pi^0\pi^0$ Regenerated beam: 1.1%Vacuum beam:0.25 %

NA48 Accidental Tagging ($K_L \rightarrow K_S$)

- Accidental protons falling in the tagging window: K_L→K_S
- Measure $\pi^+\pi^-/\pi^0\pi^0$ accidental tagging in side bands
- Extrapolate to tagging window using vertex (π⁺π⁻) or 3π⁰

 $\Delta \alpha_{\text{LS}}$ = difference in accidental tagging between $\pi^+\pi^-$ and $\pi^0\pi^0$ = 4.3±1.8 ×10⁻⁴

The difference is consistent with the higher sensitivity of the charged trigger and reconstruction to accidental activity

21-26 January, 2002

21-26 January, 2002

WIN02 Christchurch, NZ

Backgrounds from $K_L \rightarrow 3\pi^0$

 $\frac{BR(K_L \to 3\pi^0)}{BR(K_L \to 2\pi^0)} \approx 228$

•It can mimic the signal if 2γ are lost

Definition of the Decay Volume

•Sharp anti-counter cut for upstream K_S:

•Calibration of the distance/energy scale

•Reduce the error due to energy scale uncertainty

21-26 January, 2002

Energy Calibration $K_S \rightarrow \pi^0 \pi^0$

20

Linearity of the Distance Scale

KTeV

NA48

21-26 January, 2002

Check of the Energy Scale (NA48)

New preliminary measurement of η mass Energy scale independent method: measure $M_{\eta}/M_{\pi0}$

 $\Delta M \ge M_{\eta}^{NA48} - M_{\eta}^{PDG}$

 M_n^{NA48} =547.823 ± 0.020_{stat} ± 0.055_{syst} MeV

Use new $M_{\eta}^{\ NA48}$ to check energy scale

21-26 January, 2002

Final test of MC/acceptance (KTeV)

•Vacuum beam: use $K_L \rightarrow \pi ev$ and $K_L \rightarrow 3\pi^0$ to adjust simulation

21-26 January, 2002

winvoz unistchurch, NZ

Event weighting (NA48)

Results

26

Systematics

KTeV 1996+1997 on ϵ'/ϵ

	Uncertainty $(\times 10^{-4})$	
Source of uncertainty	from $\pi^+\pi^-$	from $\pi^0 \pi^0$
Class 1: Data collection		
Trigger and level 3 filter	0.56	0.18
Class 2: Event reconstruction	n, selection, ba	ackgrounds
Energy/Resolution scale	0.16	1.27
Calorimeter nonlinearity		0.66
Detector calib, align	0.28	0.38
Analysis cut variations	0.23	0.37
Background subtraction	0.20	1.07
Class 3: Detector acceptance		
Limiting apertures	0.30	0.48
Detector resolution	0.15	0.08
Drift chamber simulation	0.37	
z dependence	0.89	0.32
Class 4: Kaon flux and physi	cs parameters	5
Reg-beam attenuation	0.	19
$\Delta m, \tau_S$	0.24	
Reg phase screening	0.	31
TOTAL	2.	36

NA48 1998+1999 on R

Correction Uncertainty (×10⁻⁴)

Reconstruction of $\pi^0\pi^0$		+/- 5.8
π⁺π⁻ trigger inefficiency	-3.6	+/- 5.2
Accidental Activity		+/- 4.4
Acceptance (stat)	+26.7	+/- 4.1
Acceptance (syst)		+/- 4.0
Accidental Tagging	+8.3	+/- 3.4
Background to $\pi^+\pi^-$	+16.9	+/- 3.0
Tagging Inefficiency		+/- 3.0
Adding other smaller	Corr.	& Unc.
TOTAL	+ 35.9	+/- 12.6

21-26 January, 2002

Comparison

	Uncertainties in 10 ⁻⁴	units on Double Ratio
	KTeV 1996-1997	NA48 1998-1999
Statistics	±9.0	±10.1
Trigger Inefficiency	±3.5	±5.2
Reconstruction of $\pi^0\pi^0$	±9.2	±5.8
Reconstruction of $\pi^+\pi^-$	±2.4	±2.8
Background to $\pi^0\pi^0$	±6.4	±2.8
Background to $\pi^+\pi^-$	±1.2	±3.0
Tagging		±4.5
Acceptance (stat.)	±3.0	±4.1
Acceptance (syst.)	±7.1	±4.0
Accidental Activity		±4.6
External systematics	±2.6	
Total systematics	±14.5	±12.6

Cross Checks and Results (KTeV)

 $\operatorname{Re}(\epsilon'/\epsilon)$

= (19.8 ± 1.7 (stat) ± 2.3 (syst)

21-26 January, 2002

KTeV reanalysis of PRL data

Note: sources of shifts are not correlated WIN02 Christchurch, NZ

21-26 January, 2002

Cross checks and results (NA48)

R stability against cut variations

98+99: Eur.Phys.J.C22 (2001) hep-ex/0110019

- Re(ε'/ε)=(15.0 +/- 1.7 (stat)+/-2.1 (syst))10⁻⁴
- Re(ε'/ε)=(15.0 +/- 2.7)10⁻⁴

Combining this result with the previously published NA48 data (1997) yields:

 $Re(\epsilon'/\epsilon) = (15.3 + - 2.6)10^{-4}$

21-26 January, 2002

Epsilon'/Epsilon as a function of time...

Direct CP Violation in $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$

•Important to gather other $|\Delta S|=1$ CP violating effects

•Effects are predicted to be small: SM (O~10⁻⁵),SUSY (O~10⁻⁴) D'Ambrosio,Isidori, Martinelli, PLB480(2000)

 $|M(u,v)|^{2} \propto 1 + gu + hu^{2} + kv^{2} + ... \qquad u = (s_{3} - s_{0})/m\pi^{2} \qquad v = (s_{1} - s_{2})/m\pi^{2}$ $S_{0} = \frac{1}{3}(s_{1} + s_{2} + s_{3}) \qquad S_{i} = (P_{K} - P_{i})^{2} \qquad P_{K}, P_{i} = \text{momenta of kaon and pions (i=3 odd pion)}$ $A_{g} = \frac{(g_{+} - g_{-})}{(g_{+} + g_{-})}$

•PDG: $A_q = (-7.0\pm5.3) \times 10^{-3}$ W.T. Ford et. al. 1970

•New data FNAL-HyperCP, 5% -preliminary!-→No CP-Violation seen at a few per mill level FERMILAB-CONF-01-321-E

21-26 January, 2002

NA48/2

New technique: Simultaneous, unseparated K⁺/K⁻ beams 60 GeV; narrow band (Δ P/P ~ 10% R.M.S.) 5.5 (3.1) 10¹⁰ K⁺(K⁻) decays/year (foreseen 2003) \Rightarrow Push the measurement of A_a to 10⁻⁴

Rare Kaon Decays and the Standard Model

 $BR(K_L \rightarrow \mu e) < 4.7 \times 10^{-12}$ AGS-871 LFV $BR(K^+ \to \pi^+ \mu^+ e^-) < 2.8 \times 10^{-11}$ AGS-865 $BR(K_{I} \to \pi^{0} \mu \ e) < 4.4 \times 10^{-10} \text{ KTeV}$ $K_{I} \rightarrow \pi^{0} e^{+} e^{-}$ $K_r \to \pi^0 \mu^+ \mu^- \quad \Leftrightarrow \quad \text{Im } \lambda_t$ One Loop decays $K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ $K^+ \rightarrow \pi^+ \nu \overline{\nu} \qquad \iff \qquad |\lambda_{_{\rm t}}|$ $K_{I} \rightarrow \mu^{+}\mu^{-}$ \Leftrightarrow Re λ_{t}

21-26 January, 2002

$K_L \rightarrow \pi^0 e^+e^-$ and $K_L \rightarrow \pi^0 \mu^+ \mu^-$

•SM prediction: BR(Direct CPV)~(ImV_{td})²×3 10⁻⁴

- •Mixing contamination:
 - BR(CP-Violation mixing)~1/300 BR(K_S $\rightarrow \pi^0 e^+e^-$)
- •CP-Conserving Component
 - To be bound by studying $K_L \rightarrow \pi^0 \gamma \gamma$
- Background from $K_L \rightarrow ee\gamma\gamma$ (Greenle, 1990) starts to be seen

Mode	Upper Limit (90% CL)	Exp.	Ref.
$BR(K_L \to \pi^0 e^+ e^-)$	<5.1 10 ⁻¹⁰	KTeV	PRL86 (2001)
$BR(K_L \to \pi^0 \mu^+ \mu^-)$	<3.8 10 ⁻¹⁰	KTeV	PRL84 (2000)

New approach: measure muon polarization in $K_L \rightarrow \pi^0 \mu^+ \mu^-$

(Diwan, Ma, Trueman, hep-ex/0112350). Very large asymmetries are expected 21-26 January, 2002 WIN02 Christchurch, NZ

NA48/1: Unique Opportunity for $K_S \rightarrow \pi^0 e^+ e^- (\mu^+ \mu^-)$

- Use NA48 Detectors and beam-line
 - Exploits the NA48 collimator technique and 400 GeV SPS p beam
 - Intensity can be increased several hundred times wrt to double beam
- $K_S \rightarrow \pi^0 I^+ I^-$, $I=e,\mu$
- Search for CPV in K_s decays K_s $\rightarrow 3\pi^0$, K_s $\rightarrow \pi^+\pi^-\pi^0$
- 1999: 40h test run
 - BR(K_S $\rightarrow \gamma\gamma$) = (2.6 ± 0.4 ± 0.2) 10⁻⁶ PL B493 (2000) 29
 - BR(K_S $\rightarrow \pi^0 e^+ e^-) \le 1.4 \times 10^{-7}$ 90% CL PL B514 (2001) 253

 \Rightarrow BR(K_L $\rightarrow \pi^0 e^+ e^-)_{mixing} \le 4.2 \times 10^{-10} 90\%$ CL

- 2002:
 - Scheduled to run for about 80 days: it aims to reach SES ~3 10⁻¹⁰ for K_S → π^0 ee (Cut of beam time by 25% due to CERN budget crisis)

K_S physics: KLOE

- Designed to measure ϵ'/ϵ at the Frascati Φ factory
 - Collected ~175 pb⁻¹ in 2001, about \times 10 more than Y2K
 - Expect ~500 pb⁻¹ in 2002: enough to measure systematics for a 10^{-3} accuracy on ϵ'/ϵ using the interference method
- Competitive tagged K_S program
- Results from 2000 data (hep-ex/010702):
 - BR(K_S $\rightarrow \pi ev$)=(6.8 ± 0.3) × 10⁻⁴
 - BR(K_S $\rightarrow \pi^{+}\pi^{-})/BR(K_{S}\rightarrow \pi^{0}\pi^{0})=2.23\times(1\pm0.35\ 10^{-2}_{sta}\pm1.5\ 10^{-2}_{sys})$

$K_L \rightarrow \pi^0 \gamma \gamma (NA48)$

- a) 160 < m₃₄ < 240 MeV
- b) $240 < m_{34} < 260 \text{ MeV}$
- c) $30 < m_{34} < 110 \text{ MeV}$

 $K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$

Dominated by Direct CP Violation (Littenberg, 1989) Very special case: SM prediction is very clean; no pollution BR = $3.1 \pm 1.3 \times 10^{-11}$ (Buchalla and Buras, 1999) Intrinsic theoretical error very small (~%) •Cleanest way to measure J_{CP} and to compare to B physics: However: Current Experimental limits are 4 order of magnitude above the SM (KTeV, <5.9 10⁻⁷ 90% CL) First round of dedicated experiments approved: •KOPIO AGS (goal: ~10% measurement of $Im(\lambda_t)$) •TOF technique to measure E_{κ} •Plans to measure photon direction •Found a way to run at 100 Tpp •E391A KEK (expects 1/10 SM events, start data taking 2003) •Important to demonstrate whether $K_1 \rightarrow \pi^0 \pi^0$ background with 2 lost γ can be handled with photon vetoes and beam collimation only

Analysis of 1997 just presented:

New candidate found

21-26 January, 2002

AGS-E787

•Background expected 0.15±0.05 events

•BR(K $\rightarrow \pi^+ \nu \nu) = 1.57^{+1.75}_{-0.82} \times 10^{-10} \, 68\% \text{CL}$

•SM prediction: BR=0.79 \pm 0.21 x 10⁻¹⁰ D'ambrosio and Isidori (hep-ph/0112135)

•Limits on $|\lambda_t|$ can be obtained maximizing the quark c contribution:

 $2.9 \times 10^{-4} \le |\lambda_t| \le 1.2 \times 10^{-3}$ 68% CL

AGS-E949: to start data taking first week of February. Designed to reach a sensitivity of 10⁻¹¹/event

FNAL-CKM: Extend the study of K $\rightarrow \pi^+ \nu\nu$ by another order of magnitude employing a super-conducting RF separator and K⁺ decays in flight

Refer to Peter Cooper's talk for $K \rightarrow \pi vv$ present and future

Conclusions

- Kaon physics still provides remarkable results:
 - Direct CP-Violation exists and it is precisely measured:

$$\operatorname{Re}\frac{\varepsilon}{\varepsilon} = 17.3 \pm 1.8 \times 10^{-4}$$

Rare Kaon Decays promise quantitative tests of SM highly complementary to B physics