
VORPAL: Vlasov, Object-oriented, Relativistic, Plasma Analysis
code with Lasers

Chet Nieter∗ and John R. Cary†
University of Colorado, Boulder

VORPAL is a new simulation code under development for simulation of advanced acceleration con-
cepts such as Laser Wake Field Acceleration. VORPAL makes use of object oriented programming
techniques to achieve greater flexibility and extensibility. For example, with VORPAL, one can set
the physical dimension of the simulation at run time rather than compile time. This allows the
user to simulate an advanced acceleration scenario rapidly in 2D to look for qualitative results,
then move to 3D with the same code and nearly the same input file for more detailed simulations.
The VORPAL framework can support multiple particle models (fluid, PIC), but at present only fluid
representations are in place. VORPAL is designed to run on most flavors of UNIX and will run on
both serial and parallel machines, including Beowulf clusters. VORPAL stores data in HDF5 files,
allowing for subsequent visualization by a number of packages, including RSI’s IDL and OpenDX.
VORPAL will be applied to problems of laser-plasma interactions in the near future.

1. Dimension Free

VORPAL is a dimension free code. What is meant by this is that the same code base will support
simulations of one, two, and three dimensional systems. This is done by templating the code over
dimension. The simultaneous implementation of of arbitrary dimensions prevents us from using
nested loops to perform the updates.

We deal with the issue of indexing in multiple dimensions by using a generalization of an
iterator. We define a class called VpFieldIter, which holds the index of a 1D array corresponding
to the multiple indices of a multi-dimensional array. This class contains bump methods, which
move the index a given number of cells in a given direction. These iterators hold a pointer to a
specific field whose data they can access for either reading or writing.

To implement a computational model, we use classes which contain collections of iterators and
an update method that combines these iterators in some manner. This updater class also has
bump methods to bump its respective iterators in any direction.

To do update over a grid of arbitrary dimensions, we create walker classes that use recursion
and template specialization to walk the iterator collection objects through the grid. These classes
are templated over dimension,direction and the iterator collection class. They have an update
method which recursively calls the update method for the lower dimension. We then specialize
the walker class in the first dimension to actually call the update method of the iterator collection
class.

An advantage of this methodology is that one has a single code base for all dimensionalities
and all precisions. This reduces maintenance requirements. By using template specialization
we can inline away all of the functions, so we do not have the normal loss of performance that
accompanies recursion.

2. Multiple Models

The typical plasma simulation code involves the self-consistent integration of a model for the
charged particles along with a model for the electromagnetic field. Historically, codes have been

∗nieter@colorado.edu
†cary@colorado.edu

T804

mailto:nieter@colorado.edu
mailto:cary@colorado.edu


2

written specifically to the model. One speaks of fluid codes, particle in cell codes, fully electromag-
netic codes, electrostatic codes, etc. VORPAL is designed to provide the capacity to incorporate
different models for both the particles and the electromagnetic fields. The object oriented ideas
of inheritance and polymorphism make this possible.

An example application is that of the electromagnetic field. We have a base class in VORPAL
called VpEmField. This class defines the interface and hence all the behaviors one would expect
from a electromagnetic field, the ability to give the electric or magnetic field at any grid point and
the ability to update itself given a charge and current distribution. Any other component of the
simulation that needs information from electromagnetic field, for example updating the particles,
does not need to know the details of how the electromagnetic field is updated. The particles would
communicate with the interface for the electromagnetic field defined in VpEmField, allowing us
to put in different models for the electromagnetic field without having to change the code for
particles.

At present we have implemented and tested a finite differencing method for the electromagnetic
fields based on a Yee Mesh. The electric field lives on the edges of the cells with the direction
of the field corresponding to the vector running along the edge. The magnetic fields live on the
faces of the cells, with the direction of the field corresponding to the perpendicular to the face.
By arranging the fields in the cell in this manner, the finite differencing of Maxwell’s equations is
second order. The Yee Mesh solver has been implemented and tested in VORPAL.

The fluids are presently represented by a cold relativistic fluid. This means we assume the
pressure does not play an important role in the dynamics. Normally the equations of motion
for the the fluid would be cast into a flux conservation form and the fluid would be updated by
calculating the flux leaving or entering a grid cell at each face. This assures that you update is
conservative. We follow that conventional for the fluid density but we chose to solve the Lorentz
force equation for the fluid momentum rather than solve for the momentum density. To calculate
the fluid momentum from the momentum density we need to divide by the fluid density. By
solving for the fluid momentum directly we can simulate regions of zero momentum density.

3. Load Balancing and Domain Decomposition

There are two reasons for load balancing. The first is that different domains may have different
amounts of computation. For example, in the propagation of a beam through an accelerating
structure, the advance of the particles (the most computationally intensive part of the problem)
takes place only where there are particles. The second reason is that different domains may be
computed on processors of different capability. This is especially true of Beowulf clusters, as
they become upgraded over time. If new processors are added to a Beowulf cluster over time,
Moore’s law tells that they will be able to carry out computations in less time.

The usual 2D domain decomposition of a 3D cubic region is shown in Fig. 1. Such a decompo-
sition cannot achieve complete load balancing, as is needed when there are a larger number of
particles in one domain, as happens in beam simulations. The reason complete load balancing
is not obtainable is that there are four domains, hence three conditions for equality of the com-
puting time used by each domain. However, there are only two movable planes, thus insufficient
freedom for satisfying three conditions.

We do the domain decomposition as illustrated in Fig. 2. The decomposition planes perpendic-
ular to one direction cut the entire region, but in the second direction they break at each of the
planes of the first direction. Having three movable planes to satisfy three conditions makes load
balancing possible.

The implementation of this decomposition is more difficult than that of the usual decompo-
sition. We have prototyped a methodology for doing so. Using set theoretical ideas, we have
defined the concept of a VpGridRgn, which is a logically cubical (bounded by six planes - orthog-
onal parallelepiped). Each domain is described by two VpGridRgn’s, its physical region, physRgn,
plus a layer of surrounding guard cells, xtndRgn. The physRgn is the region over which the do-
main must solve the dynamics. To do this it must know the field at beginning of the time step
in its xtndRgn. Thus the required communication is that each domain receive the values in its
xtndRgn from the neighboring processor’s physRgn. All that needs to be done is to figure out the
intersection of the domains xtndRgn with a neighboring domain’s physRgn. This intersection is
itself a VpGridRgn and it contains the cells which the neighboring domain needs to pass to the

T804



3

Figure 1: Standard 2D decomposition of a 3D cubic region

Figure 2: Fully general 2D decomposition of a 3D cubic region

domain in question. In Fig. 3 the black rectangles are the physRgn’s of the various domains and
the red rectangle is the xtndRgn of domain 3. The blue rectangle is the intersection of domain
3’s xtndRgn with domain 2’s physRgn. This is the region that domain 2 must pass to domain 3.

4. Visualization

The visualization in VORPAL is by post-processing the output files, which are written in the
self-describing HDF5 format. The older HDF4 format can be read directly by Research Systems’

1

2

3

Figure 3: The intersection of an extended region with a neighboring domain’s physical region

T804



4

Interactive Data Language and OpenDX, a open source visualization package based on IBM’s Data
Explorer. There is a command line utility that will convert HDF4 files into HDF5 which comes
with HDF5. The next release of IDL will support HDF5 directly. Both IDL and OpenDX allow us
to write visualization scripts and more elaborate GUI driven applications. We have found that
OpenDX is easier to use since it has a very intuitive visual programming environment.

5. Conclusions

We have produced a parallel plasma physics code using object oriented programming tech-
niques and other advanced features of C++ that allows for greater flexibility compared to current
codes. Multiple representations of the both the particles and electromagnetic fields are possible,
and we have implemented a Yee mesh finite differencing for the electromagnetic fields and a fluid
model for the particles which we will use to study problems in laser-plasma interactions. Our
code runs in any dimension and with selectable precision without loss of performance. We have
the ability to support load balancing using a set-theory based message passing.

T804


	Dimension Free
	Multiple Models
	Load Balancing and Domain Decomposition
	Visualization
	Conclusions

