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The Courant-Snyder parametrization of one-dimensional linear betatron motion is generalized to two-
dimensional coupled linear motion. To represent the 4�4 symplectic transfer matrix the following ten 
parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which 
have a meaning similar to the Courant-Snyder parametrization. Such a parametrization works equally well for 
weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as 
well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid 
and the second order moments are related to the eigen-vectors. Corresponding equations can be useful in 
interpreting tracking results and experimental data.  

1. Introduction 

In many applications analysis of coupled betatron motion [1] [2] is an important part of the machine 
design. The development of accelerator technology has stimulated additional interest in the subject in 
recent years. Initially betatron coupling was an undesired effect and efforts were made to suppress it. 
However, over recent years betatron coupling has become an intrinsic part of many accelerator proposals. 
This paper introduces a new parametrizarion of coupled betatron motion, where in addition to four beta-
functions and two betatron phases we introduce four alpha-functions. That yields a complete set of ten 
independent functions to parametrize a 4�4 symplectic transfer matrix. The beta-functions have similar 
meaning to the Courant-Snyder parametrization, and the definition of alpha-functions coincides with the 
standard. 

2. Equations of Motion and Condition of Symplecticity 

The two-dimensional linear motion of a particle in a focusing lattice structure can be described by the 
following matrix equations: 

xUHx ˆˆ
�

ds
d    ,        (2.1) 

where the Hamiltonian matrix H and the unit symplectic matrix U are introduced as follows, 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�

��

���

	

1002

0
4

2

0210

20
4

2
2

2
2

R

RkKRN

R

RNRkK

y

x

H
    , .  (2.2) 

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�

0100
1000
0001
0010

U

Here x and y are the horizontal and vertical particle displacements from the ideal orbit; the derivatives are 
calculated along the longitudinal coordinate s; ; ; ; ; 
B

PceBK xyyx /,, � PceGk /� PceGN s /� PceBR s /�

x, By and Bs are the corresponding components of the magnetic field; G is the normal component of the 
magnetic field gradient; and G  is the skew component of the magnetic field gradient.  s

Introducing transfer matrix from coordinate 0 to s, for the canonical variables, , one can 
expresses the symplecticity condition for particle motion in the following form 

0ˆ),0(ˆˆ xMx s�
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UMUM �),0(ˆ),0(ˆ ss T   ,      (2.3) 

Consider a circular accelerator with the total transfer matrix M . The transfer matrix has four eigen-values, 
�

ˆ

i , and four corresponding eigen-vectors, (i = 1, 2, 3, 4),  iv̂

iii vvM ˆˆˆ ��   .       (2.4) 

We will consider the case of a stable betatron motion, meaning all four eigen-values are confined to a unit 
circle and none of them is equal to �1. For any two eigen-vectors the symplecticity condition of Eq. (2.3) 
yields following set of orthogonality conditions: 
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3. Relation between Eigen-vectors and Emittance Ellipsoid in 4D Phase Space 

The turn-by-turn particle positions and angles (at the beginning of the lattice) can be represented as a 
linear combination of four independent solutions, 
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     (3.1) 

where four real parameters, A1, A2,��1 and �2 , represent the betatron amplitudes and phases. The 
amplitudes remain constant in the course of betatron motion, while the phases change after each turn.  

Introducing the following real symplectic matrix 
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 2211 ˆ,ˆ,ˆ,ˆˆ vvvvV    , where     ,   (3.2) UVUV Tˆˆ 1
��

�

one can rewrite Eq. (2.1) in the compact form 

AAξVx ˆˆ �   ,        (3.3) 

where the amplitude matrix A is 
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Let us consider an ensemble of particles, whose motion (at the beginning of lattice) is contained in a 
4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with extreme betatron amplitudes. 
For any of these particles, Eq. (3.3) describes the 2D-subspace of single-particle motion, which is a 
subspace of the 3D surface of the ellipsoid, described by the bilinear form 

1ˆˆˆ �xΞxT   .        (3.5) 

Applying Eqs. (3.1) � (3.5), one can express the bilinear form, Ξ , in terms of its diagonal form as follows : ˆ

TT UVΞVUΞ ˆˆˆˆ ��  , where Ξ  is a diagonal matrix   (3.6) 11ˆ ��

�� AA

Therefore, a symplectic transform  reduces matrix Ξ �to its diagonal form. Then, in the new coordinate 
frame the 3D ellipsoid enclosing the total 4D phase-space of the beam can be described by the following 
equation: 

V̂ ˆ
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VΞVΞ ˆˆˆˆ T
��   .       (3.7) 

It is natural to define the beam emittance as a product of the ellipsoid axes:  

� �
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)ˆdet()ˆdet(

1 AAAA
D ��

�

�

VΞ
� �    .    (3.8) 

Thus, the squares of amplitudes A1 and A2 can be considered as 2D emittances �1 and �2 corresponding to 
the eigen-vectors  and . They coincide with the horizontal and vertical emittances of the uncoupled 
motion so that �

1v̂ 2v̂
1 �2 = �4D.  

Similarly to the one-dimensional case the particle ellipsoid shape, described by matrix Ξ , determines 
the beam emittances �

ˆ
1 and �2 , and the eigen-vectors  and . In this case the beam emittances are 

reciprocal to the roots of the following characteristic equation, 
1v̂ 2v̂

� � 0ˆdet �� UΞ �i � �� � � � � � (3.9) 

Furthermore, knowing the beam emittances and consequently , one can find the eigen-vectors  and 

 by solving the following equation 

Ξ�ˆ
1v̂

2v̂

0ˆˆ ���
�
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� l

l

i vUΞ
�

����� where l = 1, 2� � � � � (3.10) 

One can easily prove [3] that matrix  is the inverse of the second moments of the beam distribution 
matrix .  

Ξ̂

4. Beta-functions for Coupled Motion 

Employing previously introduced notation, one can parametrize the eigen-vectors  and  in the 
following form: 

1v̂ 2v̂
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Here �1x, �1y, �2x and �2y are the beta-functions; the alphas:�1x, �1y, �2x and �2y are negative half-derivatives 
of the betas at regions with zero longitudinal magnetic field and two phases:�1, �2 constitute ten 
independent parameters � the generalized Twiss functions. 

The presented parametrization [3] has been proven useful for both analytic and numerical analysis of 
coupled betatron motion in circular machines and transfer lines. Knowing the eigen-vectors, one can easily 
obtain the generalized Twiss functions. The formalism also allows one to perform the inverse operation of 
finding eigen-vectors from the generalized Twiss functions. 
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