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Ionization cooling is the best-known beam cooling mechanism for the envisioned muon colliders and
neutrino factories. Although the basic mechanism of ionization cooling is very similar to the well-
established radiation damping of electron beam in storage rings, many challenges in beam physics as
well as accelerator engineering have to be met in order to design and implement an ionization cooling
channel. In this paper we describe the beam physics aspect of ionization cooling and review our
current understanding of linear beam dynamics, especially the various heating mechanisms involved
in the cooling process. Our focus is on the linear theory of 6D ionization cooling in solenoidal
channels. Status of cooling channel developments is briefly addressed. This paper is intended to
be readable for nonspecialists.

1. Introduction

Figure 1: Effective constituent collision energy of hadron and electron-positron colliders plotted against
completion date. (©AIP, Physics Today [1].

Electron and proton accelerators have been leading the high energy frontier for decades. As
the energy frontier is being pushed further and further, both electron and proton colliders seem
to be approaching their limits due to physical, technological, and economic constraints. This is
evidenced by the falloff of the Livingston curve plotted in Fig. 1 [1, 2]. Historically the exponen-
tial growth enjoyed by the high energy physics community has been powered by innovations in
accelerating technologies (especially new types of accelerators) as shown in a Livingston plot that
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indicates accelerator types [3]. When a given accelerating technology is pushed close to its lim-
its, the growth will saturate and new technology has to take over. Within the last decade, muon
colliders have been pursued as a potential contender for the energy frontier in the future. This is
mainly because muons can be accelerated efficiently to very high energies in ring-like accelerators.
Due to the fact that muons are 207 times heavier than electrons, muon machines do not suffer
from synchrotron radiation energy loss as electron machines do. Being leptonic, muon machines
can yield the same energy reach with a beam energy many times lower than that required for
proton machines [2, 4]. In recent years, the possibility of using a muon storage ring as an intense
neutrino source has attracted worldwide attention, and the feasibility of muon-based neutrino
factories is being investigated [5, 6, 7].

The biggest challenge for high energy muon accelerators is to reduce the 6D phase-space volume
of a muon beam by orders of magnitude within a fraction of the muons’ decay time. Ionization
cooling appears to be the only promising mechanism to provide a sufficiently short damping time.
Ionization cooling is achieved by reducing the muons’ momenta through ionization energy loss
in absorbers and replenishing the momentum loss only in the longitudinal direction through rf
cavities. This mechanism can effectively reduce the transverse phase space of a muon beam in
the same way as radiation damping does to an electron beam. However this mechanism does not
effectively cool the longitudinal momentum spread because the energy-loss rate is not sensitive to
beam momentum except for very low-energy muons. To obtain longitudinal cooling, dispersion
must be introduced to spatially separate muons of different longitudinal momenta, and wedged
absorbers are used to reduce the momentum spread. Such a longitudinal cooling scheme is called
“emittance exchange” because the longitudinal cooling is achieved at the expense of transverse
heating or a reduced transverse cooling rate.

Besides the desired ionization energy loss, other undesirable processes take place during
muons’ interactions with materials. Two major effects are considered here. One is the multi-
ple scattering of muons from the nucleus of the materials, and the other is the energy straggling
resulting from the fluctuation of ionization energy loss. These effects are stochastic in nature
and thus tend to diffuse the beam phase-space distribution, i.e., heating the beam. For later use,
we introduce quantities η, χ, and χδ to quantify the ionization energy loss, multiple scattering,
and energy straggling, respectively. Let p and v be the muon momentum and velocity,

η = 1
pv

∣∣∣∣dEds
∣∣∣∣ (1)

is a positive quantity characterizing the cooling force from energy loss.

χ =
(

13.6 MeV
pv

)2
1
Lrad

(2)

is the mean square of the projected angular deviations due to multiple scattering, where Lrad is
the radiation length.

χδ = 4π(remec2)2neγ2
(

1− β
2

)
� 0.157ρ

Z
A
γ2
(

1− β
2

)
(MeV)2cm2/gm (3)

is the mean square of the energy fluctuations due to energy straggling [8, 9].
To apply the simple concept of ionization cooling to a muon beam, much hard work must be

done to limit the beam heating and reach a design that is physically sound and feasible from
an engineering standpoint. Our concern here is the physical design, for which an understand-
ing of the beam dynamics is essential. Conceptually, there are usually three different types of
dynamics problems: 1) Linear dynamics that should dominate the beam behavior for a promis-
ing design. On this subject, many theoretical treatments and design experiences can be adopted
from electron machines. However, unique features of muon cooling channels call for new de-
velopments. Obviously cooling and heating mechanisms are new subjects. Another not-so-new
subject is solenoidal focusing. Because of the large beam size and relatively low beam energy,
lattices consisting of large-aperture solenoids appear suitable for transporting the muon beam.
Solenoidal channels have long been used and treated for low-energy linacs, but not to the extent
needed for muon cooling channels. The theory discussed below reflects these new developments.
At early design stage, linear theory is very useful because it provides the necessary understand-
ing to reliably and quickly set the design requirements and main features of a cooling channel.
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2) Nonlinear problems due to the nonlinear magnetic and rf focusing forces. Nonlinearities are
responsible for the non-decay loss of muons in a channel. For muon cooling channels, the non-
linearity in both transverse and longitudinal degrees of freedom are quite severe. Careful studies
are necessary, for which mature analytical and numerical tools developed for electron and pro-
ton machines can be used. 3) Collective effects due to particles in a bunch interacting with each
other through direct Coulomb forces and wakefields. Because cooling channels have very large
apertures and relatively low beam intensities, collective effects are not much of a concern for the
time being.

In the next section, we will address the linear beam dynamics in a bare muon transport channel
without absorbers. In this case, beam motion can be described as a Hamiltonian flow in the phase
space. Emphasis will be on the basic beam concepts like beam emittances and envelope functions,
which are essential to characterize a beam. After this, we will discuss how the perturbations from
muons’ interactions with materials affect the Hamiltonian flow and result in phase-space cooling
and heating. Emittance evolution equations governing the cooling process will be established for
solenoidal channels. Finally we will address the current status of cooling channel developments.

2. Hamiltonian flow and beam emittances

The dominating forces on muons in a cooling channel are the electromagnetic forces from the
magnets and rf cavities that are designed to keep the beam well confined in phase space through a
cooling channel. Interactions with materials can be treated as perturbations. A muon’s motion can
be conveniently described by its spatial coordinates (x,y, z) and their corresponding canonical
momenta (px,py,pz). Usually, these phase-space variables are defined relative to a reference
particle whose trajectory follows the beamline layout. x andy represent deviations perpendicular
to the reference trajectory and z represents the longitudinal deviation. Path length s along the
reference orbit is used as the time variable, and δ = (p − p0)/p0 is the relative longitudinal
momentum deviation from the reference momentum p0. Without materials, a muon’s motion
is governed by a Hamiltonian H(x,px,y,py, z, δ, s). By construct, the phase-space variables
represent deviations from the reference trajectory and should be small. Thus we can expand the
Hamiltonian into a polynomial series of these variables. The first-order terms can be eliminated
by proper choice of the reference orbit. The second-order terms specify the linear forces that
we are interested in. The third- and higher-order terms correspond to the nonlinear forces to be
designed small.

Now let us consider solenoidal focusing channels. The main transverse focusing is provided by
strong solenoids of longitudinal field strength Bs . To generate dispersion for emittance exchange,
vertical dipole field By is superimposed upon the solenoidal field. Since the main solenoid field
continuously rotates the beam and tends to make the beam rotationally symmetric, it is advanta-
geous to keep symmetric focusing even with the dipole field. To achieve this, a quadrupole field
is added to balance the horizontal focusing from the dipoles. The linear Hamiltonian for such a
system reads [10]

H = 1
2

(
p2
x + p2

y

)
︸ ︷︷ ︸

drift

+ 1
2
b̂2
s

(
x2+y2

)
− b̂s

(
xpy −ypx

)
︸ ︷︷ ︸

solenoid

− xδ
ρ(s)

+ x2

2ρ(s)2︸ ︷︷ ︸
dipole

+ 1
2
b̂1

(
x2−y2

)
︸ ︷︷ ︸

quadrupole

+ 1
2

[
δ2+ V(s)z2

]
︸ ︷︷ ︸

longitudinal and rf

, (4)

where the normalized solenoid strength b̂s = q
2p0
Bs(0,0, s), the curvature of the reference orbit

1
ρ = q

p0
By(0,0, s), and the normalized quadrupole strength b̂1 = q

p0

∂By
∂x

∣∣∣
x=y=0

. The longitudinal

focusing due to rf is given by V(s). For symmetric focusing, the quadrupole components must be
tied to the bending radius as b̂1(s) = −1/2ρ(s)2 to form gradient dipoles with field index n=1/2.
Then the total focusing strength becomes K(s) = b̂s(s)2 + 1/2ρ(s)2. The Hamiltonian becomes

H = 1
2

(
p2
x + p2

y

)
+ 1

2
K(s)

(
x2+y2

)
− b̂s(s)

(
xpy −ypx

)
− xδ
ρ(s)

+ 1
2

[
δ2+ V(s)z2

]
. (5)
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We are mainly interested in cooling channels consisting of periodic cooling cells, i.e., the Hamil-
tonian and field strength functions are periodic in s.

To understand the beam evolution, it is critical to find all quadratic invariants of this linear
Hamiltonian because they determine the shape of the equilibrium phase-space distributions.
To identify the quadratic invariants, the lab-frame Hamiltonian is decoupled by two canonical
transformations. The first transformation decouples the two transverse degrees of freedom by
rotating to the Larmor frame, which rotates at half of the cyclotron frequency, to remove the
angular momentum term. Using the˜over a symbol to indicate that it is in the Larmor frame, the
transformation reads

x = x̃ cosθ + ỹ sinθ , px = p̃x cosθ + p̃y sinθ (6)

y = −x̃ sinθ + ỹ cosθ , py = −p̃x sinθ + p̃y cosθ,

where θ(s) = ∫ s
0 b̂s(s̄)ds̄ is the rotating angle of the Larmor frame. The second transformation

decouples the transverse and longitudinal degrees of freedom via

x̃ = x̃β + D̃xδ , ỹ = ỹβ + D̃yδ , z = ẑ − D̃′xx̃ + D̃xp̃x − D̃′yỹ + D̃yp̃y (7)

p̃x = p̃xβ + D̃′xδ , p̃y = p̃yβ + D̃′yδ , δ = δ̂,

where the dispersion functions can be determined by [10]

D̃′′x +K(s)D̃x =
cos[θ(s)]
ρ(s)

, D̃′′y +K(s)D̃y =
sin[θ(s)]
ρ(s)

. (8)

The resulting Hamiltonian reduces to the simple form

H̃β = 1
2

(
p̃2
xβ + p̃2

yβ

)
+ 1

2
K(s)

(
x̃2
β + ỹ2

β

)
+ 1

2

[
I(s)δ2+V(s)ẑ2

]
. (9)

Here I(s) = 1− D̃x cos[θ(s)]
ρ(s) − D̃y sin[θ(s)]

ρ(s) reflects the momentum compaction effect.

From the decoupled Hamiltonian, it is not difficult to confirm (find) the following five linearly
independent quadratic invariants, three Courant-Snyder type of invariants for each degree of
freedom and two extra invariants due to the degeneracy in the transverse degrees of freedom,

Ix = γT x̃2
β + 2αT x̃βp̃xβ + βT p̃2

xβ, (10)

Iy = γT ỹ2
β + 2αT ỹβp̃yβ + βT p̃2

yβ, (11)

Iz = γL ẑ2 + 2αL ẑδ+ βL δ2, (12)

Ixy = γT x̃βỹβ + 2αT
x̃βp̃yβ + ỹβp̃xβ

2
+ βT p̃xβp̃yβ, (13)

Lz = x̃βp̃yβ − ỹβp̃xβ. (14)

Here the transverse and longitudinal Courant-Snyder parameters can be determined by

β′T = −2αT , α′T = K(s)βT − γT , γT =
1+α2

T
βT

(15)

and

β′L = −2I(s)αT , α′L = V(s)βT − I(s)γT , γL =
1+α2

L
βL

. (16)

Averaged over the phase space, these five quadratic invariants lead to five beam invariants
that determine the areas a beam occupies in the closed subspaces, which are preserved by the
Hamiltonian flow in phase space. These invariant beam quantities are normally called beam
emittances, which are important because they are conserved beam properties and characterize
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the density of beam phase-space distribution. In a solenoid channel, the emittances are

εx ≡
√
〈x̃2

β〉〈p̃2
xβ〉 − 〈x̃βp̃xβ〉2 =

1
2
〈Ix〉, (17)

εy ≡
√
〈ỹ2

β〉〈p̃2
yβ〉 − 〈ỹβp̃yβ〉2 =

1
2
〈Iy〉, (18)

εz ≡
√
〈ẑ2〉〈δ2〉 − 〈ẑδ〉2 = 1

2
〈Iz〉, (19)

εxy ≡
√
〈x̃βỹβ〉〈p̃xβp̃yβ〉 − 〈

x̃βp̃yβ + ỹβp̃xβ
2

〉2 = 1
2
〈Ixy〉, (20)

L ≡ 〈x̃βp̃yβ〉 − 〈ỹβp̃xβ〉 = 〈Lz〉. (21)

Using the transformations in Eqs. (6,7), these emittances can be expressed in the lab-frame as
well.

3. 6D ionization cooling in a bent-solenoid channel

In order to increase the phase-space density and decrease the phase-space volume occupied
by a beam, non-Hamiltonian forces have to be applied. In ionization cooling channels, muons’
interactions with materials result in dissipative and diffusive forces on the muons. The equations
of motion written in the Larmor frame are

dx̃
ds

= P̃x, (22)

dP̃x
ds

= −K(s)x̃ + δ cos[θ(s)]
ρ(s)

− η(s)
[
P̃x − b̂s(s)ỹ

]
+
√
χ(x̃, s) ξMS

x (s), (23)

dỹ
ds

= P̃y , (24)

dP̃y
ds

= −K(s)ỹ + δ sin[θ(s)]
ρ(s)

− η(s)
[
P̃y + b̂s(s)x̃

]
+
√
χ(x̃, s) ξMS

y (s), (25)

dz
ds

= δ− x̃ cos[θ(s)]+ ỹ sin[θ(s)]
ρ(s)

, (26)

dδ
ds

= −V(s)z − (∂x̃η)x̃ +
√
χδ(x̃, s) ξES

z (s). (27)

Here the terms withoutη andχ are the direct results of Hamiltonian equations. The ∂x̃η term gives
position-dependent momentum loss due to wedged absorbers in the x̃ direction. (We assume
this wedge orientation for simplicity.) The b̂s terms are because energy loss is proportional
to the kinematic momentum instead of the canonical momentum. ξMS

x (s), ξMS
y (s), and ξES

z (s) are
uncorrelated unit stochastic quantities describing the fluctuating forces due to multiple scattering
and energy straggling, respectively.

From the linear equations of motion, second-order beam-moment equations can be derived.
There are 21 first-order differential equations for the change rates of the 21 second-order beam
moments in 6D phase space. To understand cooling dynamics it is important to solve the mo-
ment equations analytically. However, it is a formidable task to solve such a large set of coupled
differential equations. The key to success is that we can treat the muons’ interactions with mate-
rials as small perturbations. Without materials, the three degrees of freedom can be decoupled
as described earlier. With materials, we can still treat them as decoupled approximately, and the
beam envelope functions can be approximated by their zeroth-order solution. The main effects
of the material are on the emittances. Due to the dissipative and diffusive forces, the emittances
will no longer be conserved. Using the above approximations, emittance evolution equations can
be derived from the beam moment equations. We will not present the detailed calculations, but
give the results here.
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ε′x = −[η− (∂xη)Dx]εx + 1
2
ηb̂sβTL+ 1

2
βTχ + 1

2
Hx χδ, (28)

ε′y = −ηεy + (∂xη)Dyεxy + 1
2

[
ηb̂sβT + (∂xη)(βTD′y +αTDy)

]
L+ 1

2
βTχ + 1

2
Hy χδ, (29)

ε′z = −(∂xη)Dxεz + 1
2
βLχδ + 1

2
γL(D2

x +D2
y)χ, (30)

ε′xy = −[η− 1
2
(∂xη)Dx]εxy + 1

2
(∂xη)Dyεx + 1

4
∂xη(βTD′x +αTDx)L+

1
2
Hxy χδ, (31)

L′ = −[η− 1
2
(∂xη)Dx]L+ ηb̂sβT (εx + εy)+ ∂xη(βTD′y +αTDy)εx

−∂xη(βTD′x +αTDx)εxy +HLχδ, (32)

where the H terms are the corresponding phase-space invariants formed with dispersion func-
tions. For example, the familiar Hx is given by Ix(Dx,D′x) = γTD2

x + 2αTDxD′x + βTD′2x . We
remark that, because it is difficult to decouple the full Hamiltonian that contains the Hamiltonian
part of the dissipative force, we did not separate the dissipative force into Hamiltonian part and
non-Hamiltonian part as described in Ref. [11]. Therefore the coefficient matrix of the above equa-
tions is not symmetric. If we ignore the Hamiltonian part of the dissipative force, the emittance
evolution equations can be obtained simply by symmetrizing the coefficient matrix of the above
equations.

These equations clearly demonstrate the cooling mechanisms for the transverse and longitu-
dinal degrees of freedom. Without the wedged absorbers, the transverse degrees of freedom all
have exponential damping with a rate η, while the longitudinal degree of freedom has no damping
at all. By introducing both dispersion and wedged absorbers, an exponential damping term of
rate (∂xη)Dx is created for the longitudinal emittance at the expense of reducing the transverse
damping rate by the same amount, which is the essence of emittance exchange. In addition to
these apparent damping terms, there are couplings among these modes due to the absorbers.
More importantly, there are heating terms due to multiple scattering χ and energy straggling χδ.
It is instructive to illuminate the mechanism of these heating terms. There are three types of
heating terms: βχ, H χδ, and γLD2χ; all are due to noise contribution to the beam invariants.
Let us first look at the three βχ terms. Multiple scattering and energy straggling cause the trans-
verse and longitudinal momenta to fluctuate with 〈p2

x〉 = 〈p2
y〉 = χ and 〈δ2〉 = χδ, but there

are no correlated position fluctuations. Thus they contribute to the invariants only through the
β〈p2〉 term and yield the βLχ term in the two transverse emittances and the βLχδ term in the
longitudinal emittance. In addition, the transverse momentum fluctuations cause fluctuation in
the longitudinal position (but not energy) through Dx and Dy in Eq. (7), thus they contribute the
term γL(D2

x +D2
y)χ to the longitudinal emittance. There are four H χδ terms in the transverse

emittances. Energy straggling results in energy fluctuation with 〈δ2〉 = χδ, which leads to cor-
related fluctuations in both position and momentum of the transverse phase space through the
dispersion Dx and D′x . Thus it contributes to all transverse invariants and results in the four
H χδ terms. The expressions of H ’s are just a reflection of the invariant structures.

To maximize the exchange rate, wedged absorbers should be placed at dispersion maximum,
which means (∂xη) is nonzero only around D′x,y = 0. Furthermore, the maximum dispersion
should be at minimum beta, i.e., αT = 0 at the wedges. Therefore, the term ∂xη(βTD′y + αTDy)
is approximately zero for efficient emittance exchange. Dropping this term from the above equa-
tions we obtain

ε′x = −[η− (∂xη)Dx]εx + 1
2
ηb̂sβTL+ 1

2
βTχ + 1

2
Hx χδ, (33)

ε′y = −ηεy + (∂xη)Dyεxy + 1
2
ηb̂sβTL+ 1

2
βTχ + 1

2
Hy χδ, (34)

ε′z = −(∂xη)Dxεz + 1
2
βLχδ + 1

2
γL(D2

x +D2
y)χ, (35)

ε′xy = −[η− 1
2
(∂xη)Dx]εxy + 1

2
(∂xη)Dyεx + 1

2
Hxy χδ, (36)

L′ = −[η− 1
2
(∂xη)Dx]L+ ηb̂sβT (εx + εy)+HLχδ. (37)
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Note that the longitudinal equation can be easily integrated and yields an explicit formula for
the longitudinal emittance. The rest of the equations are difficult to solve analytically. One way
around this difficulty is to average the right-hand sides of the equations over one period of a
cooling channel, and then solve them by straightforward diagonalization. This should be a good
approximation because the emittances do not change much in any given period. Here we will not
get into the details of solving these equations. Even without further integration, these equations
tell us a great deal about how the ionization cooling works and what is necessary to limit the
heating effects.

Now let us consider a few important special cases. In the case of transverse cooling in straight
solenoid channels, there are no dispersions and wedged absorbers. Then the above equations
reduce to [12]

(εx + εy + L)′ = −η(εx + εy + L)+ ηb̂sβT (εx + εy + L)+ βTχ, (38)

(εx + εy − L)′ = −η(εx + εy − L)− ηb̂sβT (εx + εy − L)+ βTχ, (39)

(εx − εy)′ = −η(εx − εy), (40)

ε′xy = −ηεxy, (41)

ε′z = 1
2
βLχδ. (42)

These much simplified equations are fully decoupled and thus can be integrated easily. The
longitudinal emittance grows linearly due to the heating from energy straggling, the asymmetric
emittances are exponentially damped out, and the symmetric emittance and the angular momen-
tum are damped to certain equilibriums determined by the balance between heating and cooling.
If the beam is cylindrically symmetric, εx = εy and εxy = 0. Then only the first two transverse
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Figure 2: Transverse cooling calculated analytically, with ICOOL, and with DPGeant. (Simulation data
courtesy of P. Lebrun. ©APS, PRL [13].)

equations are necessary to describe the transverse cooling. This special case has been explored
analytically in detail and the result agree well with simulations [13]. In Fig. 2, we reproduced the
figure showing the transverse cooling performance calculated with two simulation codes and our
analytical solution for a FOFO cooling channel.

Furthermore, if we drop the angular momentum and the εxy terms, Eqs. (28,29,30) describe the
ionization cooling in a quadrupole channel as well. Detailed solution of 6D cooling in quadrupole
channels can be found in Ref. [14]. Without dispersions, the transverse cooling equation reduces
to the simple form [15]

ε′x = −ηεx +
1
2
βxχ. (43)

This well-known equation has been a major guide for cooling channel designs.
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4. Status of cooling channel developments

Ionization cooling channels have been under intense investigation over the last several years.
Because of the difficulty in longitudinal cooling and the exciting applications of neutrino facto-
ries, which do not require longitudinal cooling, focus has been temporarily shifted to transverse
cooling channel development in the last couple of years. Two intensive six-month studies on the
feasibility of neutrino factories were carried out at Fermi National Accelerator Laboratory and
at Brookhaven National Laboratory [6, 7]. Now a few designs have been worked out for trans-
verse ionization cooling in straight solenoidal channels. Although the cooling performance is
not impressive yet, moderate transverse cooling has been demonstrated with two independent
simulation codes. The simulation results agree with each other and with the linear theory dis-
cussed above [13]. Thus it is reasonably safe to say that these designs are physically sound. These
channels are also designed to be feasible from an engineering standpoint. Now the transverse
cooling channel development reaches the stage of engineering testing of hardware components
and, hopefully with adequate funding, experimental demonstration of transverse ionization cool-
ing.

The longitudinal ionization cooling problem is much harder. The linear 6D ionization cooling
theory has just been worked out. Although there are a few promising candidates, no design has
been demonstrated physically sound in reliable simulations. Much R&D effort will be required to
tackle this roadblock for muon colliders.

As a final remark, we believe that the physical design of ionization cooling channels is still far
from mature, and there is potential for major advancements, for which much research is needed.
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