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We present a model to study in a self-consistent way the interplay between intrabeam scattering
and wake-field forces in low-emittance high-intensity electron storage rings. The regime of interest
is that of the damping rings for the next generation of linear colliders.

1. Introduction

In low emittance electron rings the longitudinal dynamics may be significantly affected by both
intrabeam scattering (IBS) and wake-field effects. In particular, this will be the case in the damping
rings for the next generation of linear colliders [1]. Because both effects depend on and in turn
contribute to determining the beam distribution in phase space a self-consistent treatment is
called for. A suitable framework is given by the Vlasov-Fokker-Planck (VFP) equation. While the
VFP equation already represents a standard tool for investigating beam dynamics, inclusion of
intrabeam scattering in combination with radiation and wake-field effects does not appear to have
been considered before. Our goal in this paper is to provide this extension. In plasma physics
a Fokker-Planck modelling of interparticle collisions has long been established. Here we recall
how to adapt this description to particle beams in the full 6D phase space and we then derive
a reduced 1D VFP equation for the sole longitudinal motion. In this form the problem can be
studied by numerically solving the reduced PDE for the longitudinal beam distribution and two
ordinary differential equations for the evolution of the transverse emittances. A code for finding
the solutions of the reduced problem is currently under development and will be used to study
equilibrium distributions at high current, the effects of IBS on the onset of microwave instability
and beam dynamics above the instability threshold.

2. The VFP Equation

Our model of beam dynamics is the equation

∂f
∂s
+ {f ,H} =

(
∂f
∂s

)
c
+ FPrad(f ) (1)

obeyed by the beam distribution function in the 6D phase space f = f(X; s), with X =
(x,px,y,py, z,pz). The first two pairs of canonical coordinates, are relative to the motion in
the horizontal and vertical planes, while z describes the longitudinal displacement with respect
to the synchronous particle and pz = ∆p/p is the relative deviation of the total momentum from
the design value; s is the independent ’time-like’ variable giving the location of a particle along
the lattice. The Hamiltonian H may include wake-field and possibly space charge forces in addi-
tion to the external forces provided by the magnetic lattice and RF cavities; {·, ·} are the Poisson
brackets. The first term on the RHS represents the effect of collisions and the second that of
synchrotron radiation. For the collision term we use a Fokker-Planck approximation (which can
be obtained from the Boltzmann collision integral by doing a small angle expansion and retaining
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the lowest order terms [2]), (∂f/∂t̃)c � F̃Pc(X) with (i, j = x,y, z)

F̃Pc(X) = −
∑
i

∂
∂p̃i

(f̃ D̃i)+ 1
2

∑
i,j

∂2

∂p̃i∂p̃j
(f̃ D̃ij). (2)

The tilde ~denotes quantities in the beam rest frame; in this frame (x̃, p̃) ≡ X̃ are the actual
position and mechanical momentum. Drift D̃i and diffusion D̃ij coefficients can be written as

D̃i(x̃, p̃) = Γ
∂
∂p̃i

∫
f̃ (x̃, p̃′)
|p̃ − p̃′|d

3p̃′, (3)

D̃ij(x̃, p̃) = Γ
2

∂2

∂p̃i∂p̃j

∫
f̃ (x̃, p̃′)|p̃ − p̃′|d3p̃′, (4)

where Γ = 8πm3c4r 2
c logΛc , with rc being the classical radius of the particle and logΛc �

log(2/θm) is the so called Coulomb logarithm. For emittance dominated beams the minimum
scattering angle θm is determined by bunch sizes. The integrals in (3) and (4) are known in
plasma physics as ‘Rosenbluth potentials’ although it appears they were first derived by Landau.

To obtain the Fokker-Planck equation in the lab frame it is just a matter of applying the proper
transformation to Equation (2). In the paraxial approximation the transformation from the lab
frame coordinates X to the beam frame coordinates X̃ is just a scaling, which can be represented
by a diagonal matrix M, X̃ = MX. Invariance of the number of scattered particles as recorded in
the two frames FPc(X)d6Xds = F̃Pc(X̃)d6X̃dt̃ permits writing the Fokker-Planck term in the lab
frame in terms of (2): FPc(X) = F̃Pc(MX)/|det M|γ0v0, having used ds = v0dt, where v0 is the
design beam velocity in the lab frame, and the relativistic time dilation dt = γdt̃. If we denote
as N the part of transformation M relative to the momenta only we have N11 = N22 = p0 and
N33 = p0/γ0 (off-diagonal terms vanish) and the VFP equation in the Lab frame can be written as

∂f
∂s
+ {f ,H} = −

∑
i

∂
∂pi

(fDi)+ 1
2

∑
i,j

∂2

∂pi∂pj
(fDij), (5)

with

Di = Γ
γ2

0v0N2
ii

∂
∂pi

∫
f(x,p′)
|N(p −p′)|d

3p′,

Dij = Γ
2γ2

0v0N2
iiN

2
jj

∂2

∂pi∂pj

∫
f(x,p′)|N(p −p′)|d3p′,

having also made use of f(X) = |det M|f̃ (MX) = p3
0f̃ (MX). For a discussion on the range of

applicability of the VFP equation we refer the reader to e.g. [2]. The familiar IBS growth rates for
the emittances [3] can obtained after multiplying both sides of Eq. (5) by second powers of mo-
menta and integrating over the phase space variables under the assumption that the distribution
function f is gaussian.

3. The Reduced 1-D VFP Equation

For the beam we assume a distribution of the form

f(X) = Ng(z,pz)
(2π)2εxεy

exp [−Sx(X)− Sy(X)] , (6)

with the horizontal and linear invariants given by

Sx = [βx(px − pzη′x)2 + 2αx(x − pzηx)(px − pzη′x)
+γx(x − pzηx)2]/2εx. (7)
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(Similar expression for Sy ). Here αx , βx , γx are the Courant functions and ηx is the dispersion
function. Let the Hamiltonian Hz for the longitudinal motion be that of an ultra-relativistic elec-
tron bunch experiencing linear RF forces and single-turn wake fields. Such a Hamiltonian reads
[4]

Hz = 1
2
p2
zαc +

1
2αc

(
νs
R

)2

z2 +

I
∫∞
z
dz′′

∫∞
−∞
dz′W(z′′ − z′)ρz(z), (8)

where W(z′′ − z′)/2πR has the meaning of averaged (over one turn) longitudinal electric field
per unit charge acting on a test particle in z′′ due to a point source at z′; R is the machine radius;
ρz =

∫
dpzg(z,pz) is the longitudinal beam density; νs the synchrotron oscillation tune; αc the

momentum compaction and finally I = e2N/2πRcp0. The reduced VFP equation obeyed by g is
obtained from Equation (5) by integrating with respect to the transverse coordinates. This leads
to

∂g
∂s
+ {g,Hz} = − ∂

∂pz
(gD̂z)+ 1

2
∂2

∂p2
z
(gD̂zz)+ FPrad(g), (9)

where the drift and diffusion coefficients due to IBS are

D̂z =
∫
dx⊥dp⊥f(X)Dz(x,p), (10)

D̂zz =
∫
dx⊥dp⊥f(X)Dzz(x,p), (11)

with Dz and Dzz given by the expressions at the end of the previous Section. The last term on
the RHS of (9) represents the Fokker-Planck term associated with the effects of radiation on the
longitudinal motion. It can be written as

FPrad(g) = 2

cτrad
p

∂
∂pz

(
pzg + σ 2

p0
∂
∂pz

g
)
, (12)

where τrad
p is the longitudinal damping time and σp0 the natural (relative) momentum spread of

a bunch at equilibrium due to sole radiation effects. The results of integration in (10) and (11)
are best written in terms of the auxiliary function

Fα(u) =
∫∞

0
dλ

λαe−[A33+λ−A13/(A11+λ)]u2/4

(λ+ βx/εx) 1
2 (λ+ βy/εy) 1

2

. (13)

After defining A = Nr 2
c log(Λc)/2

√
πβ4

0γ
5
0εxεy and uz = (pz − p′z)/γ0 we have

D̂z = −A
∫∞
−∞
dp′zg(z,p′z)uzF 1

2
(uz),

D̂zz = A
2

∫∞
−∞
dp′zg(z,p′z)[2F− 1

2
(uz)−u2

zF 1
2
(uz)].

with A11 = βxεx , A122 = βyεy , A33 =Hx/εx and A13 = −(βxη′x+αxηx)εx . The RHS of the above
expressions are understood to be averaged over the lattice.

Equation (9) is not self-contained because the IBS drift and diffusion coefficients depend on
the transverse emittances. The evolution of the transverse emittances can be determined by
solving a pair of ODE’s using the familiar expressions for the IBS growth [3], radiation damping
and excitation rates. At each time step these equations require specification of longitudinal rms
bunch size and momentum spread, which are determined from the solution g of (9). Notice that
this scheme is not completely self-consistent because the familiar IBS growth rates are derived
on the assumption that the beam distribution is gaussian while g, in general, is not.

To solve the VFP equation (9) one can follow the method proposed in [4]. An implementation
of this method for this problem is currently under development. The distribution function g is
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represented on a cartesian grid and operator splitting is used to evaluate the propagation of g
under the action of the Vlasov and FP part of the equation separately. The Hamiltonian part of
the dynamics in particular is treated by the method of the Perron-Frobenius operator. For some
preliminary results see [5].

I would like to thank A. Kabel, R. Ruth, and in particular R. Warnock and K. Bane for useful
discussions and assistance. Work supported by DOE contract DE–AC03–76SF0051.
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