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We describe the contributions of virtual corrections and soft gluon emission to the inclusive Higgs
boson production cross section pp → H+X computed at next-to-next-to-leading order in the heavy
top quark limit. We also discuss estimates of the leading non-soft corrections.

1. Introduction

The Standard Model is almost thirty-five years old, and its essential goal, to describe the electro-
weak interactions as a spontaneously broken SU(2)L⊗U(1)Y gauge symmetry has been spectac-
ularly confirmed. However, the agent of electroweak symmetry breaking remains elusive. The
simplest model of symmetry breaking, called the Minimal Standard Model, uses a single complex
doublet of fundamental scalars and is the benchmark for studies of the symmetry breaking sector
of the theory. Direct search limits from LEP tell us that the Higgs mass is greater than ∼ 114 GeV.
Fits to precision electroweak data prefer a mass well below the direct search limit although the
95% confidence level upper limit is somewhat greater than 200 GeV.

Higgs boson production at hadron colliders is dominated by the gluon fusion mechanism. How-
ever, experiments must not only produce Higgs bosons, they must also detect them. With a
center-of-mass energy of 2 TeV, the Fermilab Tevatron is primarily sensitive to a Higgs boson
with mass below the threshold for decay into W boson pairs. In this case, the Higgs will decay
almost exclusively into bb̄ pairs which will be undetectable on top of an enormous QCD back-
ground. Since the total cross section is too small to permit the use of rare decay modes, a light
Higgs can only be detected through associated production with aW or Z boson. Only if the Higgs
is sufficiently massive that the WW∗ channel begins to open up, will inclusive production via the
gluon fusion mechanism be useful in the Tevatron Higgs search.

At the CERN LHC, however, gluon fusion will be the discovery channel for the Higgs. The cross
section for light Higgs boson production will be sufficiently large that the rare decay H → γγ
can be used up to the point that the WW∗ channel begins to open up. From that point on, the
diboson decays provide a very robust signal.

2. Methods

The Higgs boson couples to mass, which presents a problem for hadronic production. Gluons
are massless and therefore do not couple directly to the Higgs at all, while the quarks that make
up the proton have very tiny masses. Therefore, the dominant production mechanism is gluon
fusion via virtual top quark loops. In the limit that the top quark is very heavy, we can integrate
out the top and formulate an effective Lagrangian coupling the Higgs boson to the light quarks
and gluons [1, 2, 3]. If we take the light quarks to be massless, the effective Lagrangian takes the
form

Leff = C1(αs)HGaµνGaµν, (1)

where Gaµν is the gluon field strength tensor. The coefficient function C1(αs) has been computed
to order α4

s [4].
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Figure 1: Representative diagrams of virtual corrections, single real radiation and double real radiation.

The use of the effective Lagrangian allows us to replace massive loop diagrams with point-like
interactions. Next-to-leading order (NLO) corrections to inclusive Higgs production have been
computed using both the effective Lagrangian [5, 6] and the full theory [7, 8]. One expects that
the effective Lagrangian will work very well if the Higgs mass is much smaller than twice the top
mass but that it will be unreliable for larger masses. In fact, it was found that at NLO the effective
Lagrangian does indeed agree very well with the full calculation below the top threshold and was
even found to agree to within 10% for Higgs masses as large as 1 TeV.

It was also found that the NLO corrections are very large, of order 70 − 100%. Such large
corrections clearly call for the evaluation of still higher-order terms in order to arrive at a solid
theoretical understanding of the process. Since the effective Lagrangian seems to be a valid
approximation, especially in the phenomenologically interesting region of Higgs boson masses
below 200 GeV, we have embarked on an effort to compute the full next-to-next-to-leading order
(NNLO) corrections in the heavy top limit. In this talk, we will present results for soft plus virtual
corrections to inclusive Higgs production [9, 10, 11]. These terms are not expected to dominate
the full result and for this reason we also discuss an approximation of the formally sub-leading
but numerically dominant contribution [12].

3. The Soft Approximation and Beyond

There are three distinct contributions to inclusive Higgs production at NNLO (see Figure 1):
Virtual corrections to two loops, single real radiation to one loop and double real radiation at
tree level. These three channels produce radiative corrections that fall into three categories,
depending on their functional dependence on the fraction x ≡ M2

H/ŝ of the center-of-mass energy
squared of the scattering process that goes into producing the Higgs boson.

σNNLO = x


aδ(1− x)+ 3∑

n=0

bn

(
lnn(1− x)

1− x

)
+
+

3∑
n=0

cn lnn(1− x)+ . . .

 . (2)

In the virtual corrections, all of the energy goes into Higgs boson production, so these terms
contribute only to the δ(1−x) correction. Real emission processes generate terms like (1−x)n−mε
where n ≥ −1 is an integer and ε is the dimensional regularization parameter where space-time
is taken to be D = 4− 2ε dimensions. These processes contribute to the a and bn coefficients in
equation (2) by expanding terms like (1− x)−1−mε as distributions

(1− x)−1−mε = −δ(1− x)
mε

+
∞∑
n=0

(−mε)n
n!

[
lnn(1− x)

1− x

]
+
. (3)

In the soft limit, there would be no energy carried away by real emission and only the δ(1−x)
term would be kept. However, the

[
lnn(1−x)

1−x
]
+ terms are directly connected to the δ(1−x) terms

through equation (3) and in canceling the infrared poles proportional to δ(1 − x) we get these
terms for free so they are kept as part of the soft approximation.

While the soft approximation keeps the formally leading terms, it was found that at NLO it is
a poor approximation. It is actually the sub-leading cn (n = 0,1 at NLO) terms that dominate
the cross section. At NNLO, the cn terms are again expected to dominate. Krämer, Laenen and
Spira [12] have used collinear resummation to derive approximate NNLO results for a,bn and cn.
We expect their resummation to give the correct values for the coefficients b3, b2 and c3. The
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Figure 2: NNLO K-factor as a function of Higgs boson mass at (a)
√
ŝ = 14 TeV and (b)

√
ŝ = 2 TeV. The

solid line corresponds to approximation 1 above, the dashed line to approximation 2 and the dash-dot
line to approximation 3. The dotted line represents the soft approximation.

other coefficients require additional calculation, higher order resummation coefficients or, for
the remaining cn, receive non-collinear contributions and we do not expect the approximation to
be accurate. For the a and bn terms which we have computed directly, these expectations are
fulfilled, giving us confidence that the dominant term, c3 is indeed accurate.

This gives us a range of possibilities for estimating the full NNLO correction. In Figure 2 we
show three approximations in addition to the soft limit:
1) Use c3, c2, c1 and c0 from Ref. [12],
2) Use c3 from Ref. [12] and generate sub-leading lnn(1−x) terms by expanding xbn → bn+ (1−
x)bn,
3) Use c3 from Ref. [12] and drop all sub-leading lnn(1− x) terms.
Note that in order to truly estimate the NNLO cross section, one needs NNLO parton distribution
functions (PDFs). Unfortunately, the necessary ingredients for producing NNLO PDFs are still
being developed. Approximate NNLO PDFs have been produced, but at the time of this work they
are not yet publicly available. We therefore use the CTEQ5 NLO parton distribution functions [13]
and acknowledge the inconsistency.

There are two outstanding features of Figure 2: the formally sub-leading ln3(1 − x) terms
dominate the corrections, and the size of the corrections is very large. One expects that using
NNLO PDFs will reduce the magnitude of the correction by ∼ 10%, but it will still be very large.
We can take the spread between these approximations as an estimate of the uncertainty due to
the uncalculated terms.

4. Conclusions

We have described a calculation of the soft plus virtual NNLO corrections to inclusive Higgs
production and estimates of the full NNLO correction based on collinear resummation. While
the soft plus virtual terms are perturbatively well-behaved, the leading non-soft terms dominate
the cross section and give rise to very large corrections. At this time, the two most important
questions concerning inclusive Higgs production are 1) What is the precise value of the NNLO
K-factor? and 2) How reliable is the NNLO K-factor with respect to even higher order corrections?
The first question can be answered by completing the full NNLO calculation and this work is
underway [14]. The second question, which is crucial for determining the precision to which the
properties of the Higgs boson can be measured at the LHC, requires further investigation.
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