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I study how well one can extrapolate the values of supersymmetry-breaking parameters to very
high energy scales using future data from the Large Hadron Collider and an e+e− linear collider. I
consider tests of the unification of squark and slepton masses in supergravity-inspired models. In
gauge-mediated supersymmetry breaking models, I assess the ability to measure the mass scales
associated with supersymmetry breaking. I also show that it is possible to get good constraints on
a scalar cubic stop-stop-Higgs couplings near the high scale. Different assumptions with varying
levels of optimism about the accuracy of input parameter measurements are made, and their impact
on the extrapolated results is documented.

After the discovery of supersymmetry, the most important goal of experimental investigations
in high energy physics will be to discern the type of supersymmetry breaking. In almost all imag-
inable scenarios, this will involve evaluating the supersymmetry breaking parameters at some
very high input scale (perhaps the Planck mass scale, the GUT scale, or the scale of new extra
dimensions) where they hopefully take a simple form. In practice, one must measure the par-
ameters of the supersymmetric model at the weak scale, and then evolve them according to the
renormalization group (RG) to the high scale where various proposed organizing principle can be
tested.

In this note, I will examine the question of how accurately this can be done. In doing so, it is
crucial to assign uncertainties to all parameters of the model. Even quantities which do not enter
directly into the RG running of quantities of interest at one-loop can affect them indirectly but
significantly, by 2-loop effects and/or by the effects of enforcing proper electroweak symmetry
breaking. Rather than attempting to argue in detail for how well the LHC and a future linear
collider can measure the relevant quantities, I will simply present results for rough guesses of
experimental uncertainties, labelled as “optimistic,” “pessimistic,” and “intermediate.” My choices
for these assumed uncertainties, in per cent, are shown in Table 1. Of course, experimental
realities can (and probably will) turn out to be quite different. History has shown that estimates
of obtainable uncertainties concocted before experiments are done can be considerably different
from those eventually obtained.

The methods used here are as follows. A template set of model parameters at the input scale
is picked, and evolved to the electroweak scale to obtain central values for MSSM observables.
For each individual observable uncertainty, a one-sigma range for all model parameters is RG-
evolved back up to the input scale. The one-sigma ranges for all parameters at all RG scalesQ up
to the high scale are then obtained by adding the individual one-sigma ranges in quadrature. My
conventions for model parameters and signs are those in [1]. I use the 2-loop MSSM RG-equations
found in [2]. Electroweak symmetry breaking and sparticle pole masses are computed using [3].
Previous works have conducted similarly-motivated analyses; c.f. [4]-[5]

A test of the ability to verify squark and slepton mass unification at the input scale is shown
in figures 1-3. The template model in this case is an mSUGRA model with input parameters
m1/2 = 240 GeV, m0 = 120 GeV, A0 = −120 GeV, tanβ = 10, and µ > 0. Figure 1 shows the
one-sigma range for the running sfermion masses ẽR, ẽL, and Q̃L using the “pessimistic” set of
uncertainties. While the results at the GUT scale are consistent with scalar mass unification,
they are hardly definitive. The improved situation for the case of “intermediate” uncertainties
is shown in Figure 2. I find that further improvement to the case of “optimistic” uncertainties
does not actually help much, because the uncertainties are now dominated by that of the gluino
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Table I Assumed uncertainties, in per cent, for various model parameters at the weak scale.
Parameter “optimistic” “intermediate” “pessimistic”

α1, α2 0.2 0.2 0.2

α3 1 1 1

yt 1 1 1

yb 5 5 5

M1, M2 0.2 0.5 1

M3 2 2 4

mẽ,mµ̃ 0.1 0.5 1

mτ̃ 0.2 1 2

mq̃,mt̃,mb̃ 1 1 3

mHu,Hd 1 1 5

at 2 2 5

ab 10 10 100

aτ 10 10 100

2 4 6 8 10 12 14 16 18
Log10[Q/GeV]

−200

−100

0

100

200

300

400

500

600

R
un

ni
ng

 M
as

s 
[G

eV
]

m1/2=240,  m0=120, A0=−120, tanβ=10, µ>0

Figure 1: RG running of the one-sigma range of values for mẽR (solid), mẽL (dashed), and mQ̃L
(dot-dashed), using “pessimistic” uncertainties for all weak scale parameters as in Table 1. The
underlying model parameters are m1/2 = 240 GeV, m0 = 120 GeV, A0 = −120 GeV, tanβ = 10, µ > 0.

mass. So measuring slepton masses at the 0.1% level does not represent much improvement
over the 0.5% level, unless the uncertainty in the gluino mass can be improved significantly. A
different way of showing the results is presented in figure 3, which plots the one-sigma allowed
range for [m2

ẽL −m2
ẽR ]

1/2, which should be consistent with 0 at the GUT scale. Even in the case
of “optimistic” uncertainties, there is almost a 100 GeV one-sigma uncertainty in this quantity at
the GUT scale. This illustrates a limitation on our future ability to distinguish D-term or other
sources of scalar mass non-universality.

Another interesting question is whether one can distinguish scalar cubic couplings at the high
scale. In most models of SUSY breaking, these couplings are assumed to be proportional to
the corresponding Yukawa coupling, so for example the Lagrangian contains a coupling L =
−att̃∗R t̃LH0

u with at = A0yt at the input scale. A principle goal in understanding SUSY breaking is
then to measure A0, and especially its ratio (including sign) tom1/2. In general, this is made more
difficult by the fact that at has some fixed-point-like behavior. Nevertheless, I find that it may
be possible to determine at least the sign of A0 and possibly get some limits on its magnitude.
In practice, at the weak scale one can obtain at from the stop masses and mixing angle and µ
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Figure 2: As in Figure 1, but using “intermediate” uncertainties for all weak scale parameters as in Table
1. The results for “optimistic” uncertainties do not differ very much from these.
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Figure 3: RG running of the one-sigma range of values for [m2
ẽL −m2

ẽR ]
1/2, using “optimistic”(solid) and

“pessimistic” (dashed) uncertainties for all weak scale parameters as in Table 1. The underlying model
parameters are as in Figures 1,2. The results for “intermediate" uncertainties do not differ much from
those shown for the “optimistic” case.

according to:

at = 1
v sinβ

[
(m2

t̃1
−m2

t̃2
) cosθt̃ sinθt̃

]
+ytµcotβ (1)

where v = 175 GeV. The 1-sigma results of running at up are shown in figure 4 for an mSUGRA
model with m1/2 = 240 GeV, m0 = 120 GeV, tanβ = 10, µ > 0, and A0 = ±m1/2. Even with the
case of pessimistic assumptions with an assumed uncertainty in at at the weak scale of 5%, one
can evidently determine the sign of A0 at the GUT scale. The two possible signs for A0 can be
clearly separated from each other and perhaps from the case that A0 = 0.

Finally, I turn to the case of determining SUSY breaking parameter in GMSB models. It has
been shown that a global fit to these model parameters using only LHC data can determine them
with very high accuracy [5]. It is also useful to examine the consistency of the global fit, using
several different variables to get at the same underlying parameter. For example, in the minimal
GMSB model with a single 5 + 5 messenger sector, one can consider running quantities defined
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Figure 4: RG running of the one-sigma range of values for the Higgs-stop-stop coupling, using
“optimistic” (solid) and “pessimistic” (dashed) uncertainties at the weak scale. The upper set of lines
corresponds to A0 = +m1/2, and the lower set to A0 = −m1/2 at the GUT scale. The other underlying
model parameters are as in Figures 1,2,3.
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Figure 5: RG running of the quantities ΛM1 , ΛẽL , and Λd̃R using “pessimistic” uncertainties for all weak
scale parameters as in Table 1. The intersection gives the values and uncertainties for the minimal GMSB
model parameters Λ on the vertical axis and Mmess on the horizontal axis.

as follows:

Λm2
ẽR
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ẽR /[
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)2

] (2)
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from 1st and 2nd family sfermion masses, and

ΛMa = (4π/αa)Ma (a = 1,2,3) (7)

from gaugino masses. Evaluated at an RG scale equal to the common messenger mass Mmess, all
of these quantities should be equal to the parameter Λ of minimal GMSB. A test of this using
one-sigma allowed ranges is shown in figure 5 for a model with Λ = 100 TeV, Mmess = 104 TeV,
Nmess = 1, tanβ = 15, and µ > 0. For simplicity, the graph only shows the determination of ΛM1 ,
ΛẽL , and Λd̃R , using the “pessimistic” set of assumptions regarding weak-scale uncertainties. As
can be seen, this analysis can provide a non-trivial check of the assumptions going into the model
parameterization, as well as determining the model parameters themselves.

In general, improvements in the accuracy with which superpartner masses, mixing angles, and
couplings can be measured will help us to understand better the mode of supersymmetry break-
ing. As the above results help to illustrate, one can produce strong constraints and consistency
checks on the model of supersymmetry breaking. However, it is also clear that the uncertainties
on high-scale parameters are often not reduced by arbitrarily accurate measurements of the most
well-measured parameters; because the most poorly measured parameters come to dominate the
uncertainties. In particular, an accurate measurement of the gluino mass may be the bottleneck
to accurate determinations of the SUSY breaking mechanism.

This work was supported in part by NSF grant PHY-9970691.
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