
Testing the Standard Model at the Fermilab Tevatron ∗

Martin Grünewald†
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For Run 2a, the Tevatron will deliver 2 fb−1 at
√
s by 2004 to the upgraded CDF and

DØ detectors, increasing the data from Run 1 twentyfold. Run 2b, inspired by Snowmass

96 and the TeV2000 workshop[1], aims for 15 fb−1 by 2007, before the LHC begins to do

physics. There are discussions of further upgrades to accumulate 30 fb−1 by 2008 or 2009.

I. W BOSON MASS

The measurement of the W boson mass from Tevatron Run 1 data achieved a precision of

68 MeV[2]. A variety of methods can be used to measure the W boson mass with different

tradeoffs between statistical and systematic uncertainties. These include fits of the transverse

mass and lepton pT spectra to templates from Monte Carlo simulations. Most systematics,

such as the detector calibration and the recoil model, are driven by the number of Z boson

decays observed[3]. Measurements of the charge asymmetry in W → `ν decays will help

constrain the parton distribution functions. New QED calculations will reduce theoretical

uncertainties. In the ratio method, developed by DØ[4], the Z boson data are rescaled to

fit the W boson data. This reduces most experimental and some theoretical uncertainties

at the cost of statistical sensitivity. In all cases, systematic uncertainties are expected to

dominate. Since the main systematics differ, these methods can be used to check the results

for consistency at the 10 MeV level.

Table I shows the expected precision of the W mass measurement from the transverse

mass fit, extrapolated from the Run 1b measurement by DØ[5]. The calorimeter scale and

linearity assume constraints from Z data only, not the J/ψ and π0 data used in Run 1. By

about 30 fb−1, the determination of the energy resolution will be systematically limited by

the uncertainty in the width of the Z boson. The uncertainty due to electron removal was

conservatively assumed to decrease only by half. Table I also shows an extrapolation of the

uncertainty for the ratio method from Run 1 results by DØ. The systematic uncertainty for

this method is smaller than for the transverse mass fit and it may well be the best for high

integrated luminosities. We conclude that the W boson mass will be measured at the end

of Run 2 to a precision of 15 MeV, perhaps even 10 MeV, combining the results from both

experiments, using several methods and the W → eν and W → µν channels.
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TABLE I: Projected uncertainties in MeV of the W boson mass measurement using the transverse

mass fit (left) and the ratio method (right) for W → eν decays.
∫ Ldt (fb−1) 0.08 2 15 30

statistical uncertainty 96 19 7 5

production/decay model 30 14 13 13

backgrounds 11 2 1 1

detector model 57 13 8 8

total systematic 66 19 16 15

total uncertainty 116 27 17 16

∫ Ldt (fb−1) 0.08 2 15 30

statistical uncertainty 211 44 16 11

total systematic 50 10 4 3

total uncertainty 217 44 16 12

II. TOP QUARK MASS

In Run 1, the top quark mass was measured to ≈ 5 GeV[6, 7]. For Run 2, tt data samples

will be large enough to allow a double b-tag. For 15 fb−1, per experiment 3200 double-tagged

single-lepton and 1200 untagged dilepton events are expected.

The main systematic uncertainty for the top quark mass measurement is the jet energy

scale. Using Run 1 methods, this uncertainy cannot be reduced below a couple of GeV.

However, both experiments plan to use pp → Z → bb events, which will help set the energy

scale to a precision of about half a GeV[8]. In addition, the hadronically decaying W in

single-lepton tt events provides an independent calibration point[9].

The next most important systematic uncertainty is modeling of gluon radiation in the ini-

tial or final state of tt events. In Run 1, this uncertainty was estimated mainly by comparing

predictions of different event generators. In Run 2, the modeling of jet activity in top quark

events can be constrained better by comparing double-tagged events with simulations. We

estimate this uncertainty to be about 1 GeV, and expect it to decrease only slightly with

increasing integrated luminosity. Other systematics will scale inversely with the square root

of the integrated luminosity.

We extrapolate the uncertainty on the top mass based on Run 1 DØ results in the single-

lepton channel[7] in Table II. We take the higher cross section at
√
s = 2 TeV in account

and we assume double b-tagging with an efficiency per b-jet of 65%. Double b-tagging will

essentially eliminate the uncertainty due to W+jets background. The uncertainty in the
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dilepton channel[10] is also extrapolated in Table II. No b-tagging is assumed here. For each

channel and each experiment, a precision of abut 1.2 GeV is projected. By combining both

channels and experiments an overall precision close to 1 GeV should be achievable.

TABLE II: Projected uncertainties in GeV of the top quark mass measurement in the single-lepton

channel (left) and dilepton channel (right).
∫ Ldt (fb−1) 0.1 2 15 30

statistical uncertainty 5.6 1.7 0.63 0.44

jet scale (W → qq) 4.2 1.8 0.64 0.45

jet scale (Z → bb) — 0.53 0.19 0.14

MC model (gluon radiation) 1.9 1.1 0.97 0.96

event pile-up 1.6 0.49 0.18 0.13

W+jets background 2.5 0 0 0

b-tag 0.4 0 0 0

total systematic 5.5 2.1 1.2 1.1

total uncertainty 7.8 2.7 1.3 1.2

∫ Ldt (fb−1) 0.1 2 15 30

statistical uncertainty 12.3 2.4 0.87 0.62

jet scale 2.0 0.88 0.32 0.23

MC model 2.3 1.0 0.96 0.96

event pile-up 1.4 0.27 0.10 0.07

background 0.9 0.17 0.06 0.05

method 0.9 0.17 0.06 0.05

total systematic 3.6 1.4 1.0 1.0

total uncertainty 12.8 2.8 1.3 1.2

III. FORWARD-BACKWARD ASYMMETRY

The forward-backward asymmetry AFB in the process uu + dd → Z → `+`−, measured

near the Z pole, gives a value of the weak mixing angle sin2 θw. CDF published AFB =

0.070 ± 0.015(stat)± 0.004(syst) based on data from Run 1[17]. The statistical uncertainty

scales to 0.0016 for 10 fb−1 and to 0.0009 for 30 fb−1. The most important systematic

uncertainty arises from the parton distribution functions. These can be constrained by the

charge asymmetry in W decays. A theoretical uncertainty arises from the limited rapidity

coverage and the pT distribution of the Z. Both the rapidity and pT distribution of the Z

will be measured and this uncertainty will be reduced. It is expected that the statistical

uncertainty will dominate all systematics[3].

Combining the electron and muon channels from both experiments leads to a projection

for the precision of the sin2 θw measurement of 0.00028 for 10 fb−1 and 0.00016 for 30 fb−1[3],
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comparable to the current world average[18]. This should clarify the 3.5σ discrepancy be-

tween sin2 θw from A` measured at SLD[19] and A0,b
FB, measured at LEP[16].

IV. CONSTRAINTS ON THE HIGGS BOSON MASS

A significant uncertainty in inferring constraints on the Higgs boson mass from precision

electroweak measurements arises from ∆α
(5)
had (M2

Z), the contribution of light quarks to the

running of αEM . Its calculation employs Rhad(s) = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

from low energy data. The LEP electroweak working group uses a data-driven value[11] and

also considers a more theory-guided value[12]. BES has recently improved the precision of

Rhad(s) to 7% for 2 <
√
s < 5 GeV[13]. There are plans to measure Rhad(s) more precisely

at CLEO-c[14] in the next six years. We assume that ∆α
(5)
had (M2

Z) will be known to 10−4, a

value already achieved in a recent theory-driven determination[15].

To estimate the effect of the improvements in the measurements described so far, we take

the current central values and shrink the uncertainties to 20 MeV for the W mass, 1 GeV for

the top mass, and 10−4 for ∆α
(5)
had (M2

Z). We are not using the AFB measurement here, since

we do not understand the systematics well enough. We then repeat the global electroweak

fit. Figure 1 shows the resulting χ2 as a function of the Higgs boson mass compared to the

results from the global fit with the winter 2001 values[16].

If there is no observation of the Higgs boson in Run 2, the Tevatron can exclude standard

model Higgs boson masses below about 185 GeV at the 95% confidence level[20]. Putting

the tight indirect constraints together with the direct lower limit on the Higgs boson mass

could severely challenge the standard model. The degree of inconsistency between these data

will depend on how much the central values shift. To maximize the potential of the Tevatron

to push this test of the standard model, a goal of 30 fb−1 of integrated luminosity for Run 2

would be crucial.
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FIG. 1: The χ2 curve as a function of the Higgs boson mass from the globalk electroweak fit using

the projected reduced uncertainties listed in the text.
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