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José Wudka†
Department of Physics, University of California, Riverside CA 92521-0413, USA

In this talk we consider the modifications induced by heavy physics on the triviality and vacuum
stability bounds on the Higgs-boson mass. We parameterize the heavy interactions using an effective
Lagrangian and find that the triviality bound is essentially unaffected for weakly-coupled heavy
physics. In contrast there are significant modifications in the stability bound that for a light Higgs
boson require a scale of new physics of the order of a few TeV.

a. Introduction

The recent LEP bounds on the Higgs-boson mass [1],mH > 113.2GeV together with the standard
model (SM) upper limitmH < 220GeV [2] (which is highly model-dependent) suggest the existence
of a light Higgs boson. Should this be the case, the SM stability and triviality bounds strongly
favor the appearance of new physics at scales <∼ 100TeV. In this talk we review the modifications
to these bounds generated by new physics at scales below 50TeV.

b. Triviality and Stability

It is known [3] that some theories (e.g. QED and Φ4) can be defined at all energy scales in ≥ 4
dimensions only if the bare couplings are zero, i.e. they are trivial; interacting versions can be
defined only by assuming an ultraviolet cutoff Λ. In perturbation theory this corresponds to the
appearance of Landau poles in the running couplings. The SM has this property, so that, for each
choice of the Higgs-boson mass mH there is a cutoff scale Λ beyond which the perturbation ex-
pansion breaks down. For fixed Λ this leads to an upper bound onmH [4] with the corresponding
conclusions: the SM is weakly coupled for all scales below a cutoff only if the Higgs-boson is
sufficiently light.

A lower bound on mH can also be derived by a different consistency argument, namely, that
the SM vacuum be stable, i.e. Veff(v) < Veff(ϕ̄) for all |ϕ̄| < Λ, where v ∼ 246GeV is determined
(for example) by the Fermi constant. This constraint is satisfied only if mH is sufficiently large
leading to a lower bound on mH [5].

These calculations are done assuming there are no new-physics effects below Λ. In this talk
we extend these results [7]: using an effective Lagrangian we parameterize the effects of the new
physics at scales below Λ and use this parameterization to determine the modifications in the
stability and triviality bounds described above. We will assume that the scale of new physics Λ
is � v , and that the heavy interactions are decoupling and weakly coupled. Finally we assume
that chiral symmetry is natural [8]. With these constraints on the new physics, the terms in
the effective Lagrangian [6] that affect the bounds on mH are generated by the gauge-invariant
operators [9] (O(1)qt affects Veff only through RG mixing and its effects are small; other similar
operators were not included for this reason.):
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where φ denotes the SM scalar doublet, q the left-handed top-bottom isodoublet and t the right-
handed top isosinglet. The Lagrangian we use is then LSM +

∑
i αiOi/Λ2 with the coefficients αi

parameterizing the new-physics effects. We also define η ≡ λv2/Λ2.
The triviality constraints are then obtained using the evolution equations for the various cou-

plings:
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df
dt

= 9f 3

4
− f

2

(
8g2

s +
9
4
g2 + 17

12
g′2

)
− fη

2

(
−6
αtφ
f
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where κ = MZ exp(8π2t) is the renormalization scale, and ᾱ = α∂φ + 2α(1)φ +α(3)φ . The evolution
of the gauge couplings g, g′ and gs (for the strong interactions) is unaffected by the αi’s. These
equations are solved using the following boundary conditions: αi(Λ) = O(1) (with various sign
choices); 〈φ〉 = 0.246/

√
2 TeV (at κ = v) and, finally, that theW , Z , t,H masses have their physical

values. Requiring that the couplings never leave the perturbative regime for κ < Λ then yields
the triviality bound for this extension of the SM. The plots of the running coupling constants and
the triviality bounds are given in Fig.1.

The triviality results are indistinguishable from the SM due to our requirement that the model
remains weakly coupled; if this is relaxed our conclusions need not hold [10].

The effective potential at one loop is easily obtained from the above Lagrangian. The result is

Veff(ϕ̄) = −ηΛ2|φ|2 + λ|φ|4 − αφ
3Λ2

|φ|6 + 1
64π2

5∑
i=0
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i [ln(Ri/κ
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where c0 = −4, c1 = 1, c2,4 = 3, c3 = 6, c5 = −12, ν0,1,2,5 = 3/2, ν3,4 = 5/6, R0 = ηΛ2 and
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This has the same form as in the SM, but with modified Ri. Note that Veff is gauge de-
pendent [11] but the effects of this gauge dependence are small since the RG-improved tree-
level effective potential is gauge-invariant. This leads to a variation in the Higgs-boson mass
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Figure 1: Left panel: (a) Veff at the scale κ = φ as a function of the field strength. The running of λ (b) and
αφ (c) when αi(Λ) = −1, mt = 175GeV, for Λ = 5.1TeV, mH = 140.4GeV (curves (1)) and Λ = 48.9TeV,
mH = 148.7GeV (curves (2)). Right panel: Triviality (a) and stability (b) bounds on mH for mt = 175GeV.
Stars correspond to solutions (1) and (2).

Figure 2: The unshaded region corresponds to the values of αφ(Λ), αφt(Λ) where the effective potential
has no SM minimum for fields below 0.75Λ, for any choice of 0.5TeV< Λ < 50TeV.

limit: ∆mH <∼ 0.5GeV [12]. A plot of the effective potential for some representative values
of the parameters is presented in Fig.1. Using the anomalous dimension for the scalar field,
γ = 3f 2/2 − 3(3g2 + g′2)/8 − ηᾱ/2, and a careful definition of Veff(0) [13], one can verify that
Veff is scale invariant.

In order to insure the stability of the SM vacuum we demand

Veff(ϕ̄ = 0.75Λ)|κ=0.75Λ ≥ Veff(ϕ̄ = vphys/
√

2)|κ=vphys/
√

2.

The boundary of the stability region corresponds to those values of mH and Λ that saturate the
above inequality. These boundary values are plotted in Figure 1, it is noteworthy that in contrast
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with the triviality bounds the presence of the effective operators has a significant impact on the
stability bounds. For example for a Higgs–boson mass of 115 GeV, Λ <∼ 4 TeV for |αi| = 0.50. We
also find that the main effects on the stability bound are generated by αφ, αtφ. For example, for
αφ large and positive the potential has no minimum for fields below 0.75Λ; more precisely, there
is a region in the αφ − αtφ, given in Figure 2, where the SM vacuum is either absent or unstable
for ϕ̄ < 0.75Λ.

c. Conclusions

The SM triviality upper bound remains unmodified for weakly coupled heavy physics, while the
stability bound increases by ∼ 50GeV depending on Λ and αi(Λ). For mH close to its lower LEP
limit the constraint on Λ could be decreased dramatically even for modest values of the αi. These
results complement the ones obtained within specific models [14].

Note that, strictly speaking, our expression for Veff is not valid at points where it changes cur-
vature [15]. Still we can make an arguments similar to the one above slightly below the inflection
point |ϕ̄| ∼ 0.75Λ; the resulting bounds are essentially unchanged due to the precipitous drop
of Veff beyond this point (see Figure 1).
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