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Halo formation under a non-equilibrium state for a 2D Gaussian beam in a FODO lattice was ex-
amined. Nonlinear resonant-interactions between individual particles and intrinsic beam–core os-
cillations result in a beam halo. The location of the halo is analytically tractable using canonical
equations derived from an isolated resonance Hamiltonian. Halo formation and achievement to
equilibrium can be explained by the transition of time-varying nonlinear resonances.

1. Introduction

One of the major issues in high-power hadron accelerators is activation of the environment
surrounding an accelerator due to beam loss. Beam loss must be reduced to a sufficiently low
level to allow hands-on-maintenance. In order to produce an acceptable design, it is important
to understand the mechanisms of emittance growth and halo formation that result in beam loss.
From this point of view, halo formation has been studied by simulations and theoretical analyses.
Especially, particle-in-cell (PIC) simulation codes [1] and analysis using particle-core-models (PCM)
[2] have greatly facilitated the understanding of space-charge effects. In these studies, a resonant
interaction between the individual particles and intrinsic beam-core oscillations has been found
to be a driving mechanism of halo formation. However, an analysis using PCM has been made
on an equilibrium state, where the r.m.s emittance is constant. The beam-property in a non-
equilibrium condition, which takes a key role in the resonant interaction of an injected beam,
is different from that in equilibrium. Therefore, the PCM should be misleading when a non-
equilibrium state is discussed. In addition, it is inaccurate to apply a simulation analysis, such as
an FFT analysis and a Poincar map analysis, for a non-equilibrium like that shown in this paper,
because these analyses need to track over 100 turns, but the beam distribution varies through
the non-equilibrium state in a much shorter time-period.

The purpose of this paper is to examine halo formation under a non-equilibrium condition in
a circular accelerator. In this context, we have been developing a useful analytic model, which
is based on IRH (Isolated Resonance Hamiltonian). The theory proves that the transition from
non-equilibrium to an equilibrium state associated with halo formation can be explained in terms
of time-varying nonlinear resonances.

Assumptions concerning the calculations and the example discussed here are noted as follows.
The calculations were carried out for 2-D mismatched beams with a Gaussian distribution in
a typical FODO lattice. Most of the beam/machine parameters are taken from KEK 12GeV PS,
where the injection energy is 500 MeV and the circumference is 340 m. No external nonlinear
fields, except for space-charge originated fields, were included in the present calculations. The
momentum spread was assumed to be 0%. The combination of bare tunes (νx, νy) chosen in the
present study were close to the operational parameters, (A (7.123,5.229) and B (7.203,5.229)).
In the case of A, a structure resonance due to a space-charge effect in the horizontal direction
has been pointed out in past simulation results, but no resonance was shown in the case of B [3].

2. Formalism of an isolated resonance Hamiltonian for a Gaussian beam

The space-charge potential Φ generated by a beam with the Gaussian distribution is written as

Φ(x,y ; s) = − eN
4πε0
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Figure 1: Phase-space structure of Hiso in case A. The nonlinear resonance caused (a) mismatching
(imax = 1, a = 1 and b = 14), (b) by the lattice structure (imax = 1, a = 2 and b = 28) and (c) the
superposition of (a) and (b) (imax = 10, a = 1 and b = 14).

where N is the total number of particles per unit length and ε0 is the permittivity; σx and σy are
the horizontal and vertical r.m.s beam sizes, respectively. By introducing action-angle variables
(ψx,ψy, Ix, Iy) and an independent variable θ = s/R0 [4], where x = √

2βxIx cos
(
ψx +ψ0,x

)
,

y =
√

2βyIy cos
(
ψy +ψ0,y

)
, R0 is the averaged orbit radius, βx and βy are Twiss parameters,

and ψ0,x and ψ0,y are the flutters of the betatron phase with respect to the averaged phase ad-
vance of the unperturbed betatron oscillation, the Hamiltonian describing the betatron oscillation
perturbed by the space-charge effects is given by

H(ψx,ψy, Ix, Iy ;θ) = νxIx + νyIy + eR0

γ2pv
Φ(ψx,ψy, Ix, Iy ;θ), (2)

where γ, p and v are the relativistic mass factor, the momentum and the velocity of the on-
momentum particle, respectively.

The space-charge potential can be rewritten as the combination of the oscillating terms with the
angle variable and the oscillating terms with θ originating from the flutter, r.m.s beam size and
Twiss parameter. The parametric nonlinear resonances between an individual particle and the
intrinsic beam-core oscillation are known to be excited when the phase of Φ slowly varies. Because
the past simulation results have shown nonlinear resonances in the horizontal direction [3], we
focus on the lowest slowly oscillating phase, 2aψx − bθ, where a and b are integers. The other
slowly oscillating phases are given by i(2aψx−bθ), where i is an integer. The IRH is obtained by
averaging the Hamiltonian of Eq. (2) with respect to θ [5]. In this process, rapidly oscillating terms
disappear. Furthermore, since 〈H〉 is not a constant of the motion, the canonical transformation
from (ψx, Ix) to (Ψx = ψx − bθ/ (2a) , Ix) is made. Finally, we arrive at the IRH describing the
parametric nonlinear resonance between the betatron oscillation and the oscillating space-charge
forces,

Hiso(Ψx, Ix, Iy) =
(
νx − b

2a

)
Ix + eR0

γ2pv

〈
Φ(Ψx, Ix, Iy)

〉
, (3)

where
〈
Φ(Ψx, Ix, Iy)

〉
is the time-averaged space charge potential. Hiso and Iy in Eq. (3) become

constants of motion. Details concerning the evaluation of Eq. (3) will be given in [6].

3. Transition between nonlinear resonances and halo formation

Introducing the realistic time-varying r.m.s beam size under non-equilibrium, which is past
simulation results [3], into Eq. (3), the time-varying nonlinear resonances in cases of A and B were
examined by the IRH for the early ten turns.

The IRH for case A gives the phase-space structure of the nonlinear resonances, as shown in
Figure 1. The beam core is known to oscillate due to both of the lattice structure and mismatching.
In Figure 1(a), b is 14, which is the beam core oscillation frequency due to the mismatching
per 1 turn. The two resonance islands induced by mismatching are recognized in Figure 1(a).
In Figure 1(b), b is 28, which corresponds to the periodicity of the lattice structure. The four
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Figure 2: Time varying of Hiso in case A. (a) 1st turn, (b) 3rd turn, (c) 5th turn and (d) 7th turn.
imax = 10, a = 1 and b = 14.
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Figure 3: Time varying of Hiso in case B. (a) 1st turn, (b) 3rd turn, (c) 5th turn and (d) 7th turn.
imax = 10, a = 1 and b = 14.

resonance islands induced due to the lattice structure are confirmed in Figure 1(b). Including
the multiple-beam core oscillation, the nonlinear resonances caused by the lattice structure and
mismatching overlap, as shown in Figure 1(c).

Next, the IRH for cases A and B was calculated every turn. The phase-space structures for case
A are shown in Figure 2. The resonance caused by mismatching is dominant at early few turns
because the mismatching remains there. Furthermore, the nonlinear resonance is switched to the
structure resonance, after the decay of mismatching due to the growth of filamentation. Thus, the
halo tends to grow in the tune pair of case A. The phase-space structures for case B are shown in
Figure 3. The resonance caused by mismatching is dominant, similar to that of case A. However,
because the condition of the structure resonance is not satisfied since the depressed tune is far
from 7, the nonlinear resonance is rapidly lost after decay of the mismatching. The particles
moving to the resonance island caused by mismatching are thought to be smeared out due to the
nonlinear space-charge fields. Therefore, the beam distribution achieves an equilibrium state.

4. Conclusion

An isolated nonlinear resonance theory has been established to examine halo formation under
a non-equilibrium condition in a circular accelerator, which can consistently explain the phase-
space dynamics from the early stage of injection to arriving at the equilibrium state. The isolated
nonlinear resonance Hamiltonian has been proved to be a useful tool to estimate the position and
size of the halo, which is quite important in a practical sense. It has been concluded that the halo
is driven by a time-varying nonlinear resonance excited by the intrinsic beam core oscillation
at the non-equilibrium state; in addition, the beam distribution achieves an equilibrium state
through the decay process of the nonlinear resonances.
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