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Self-interacting, nonequilibrium, very-many-body systems such as elliptical galaxies and charged-
particle beams seem generically to exhibit rapid evolution to a quasi-equilibrium state. Such systems
comprise some 1010−12 particles. The associated collisional relaxation time of elliptical galaxies is
∼ 1015−16 years, several orders of magnitude larger than the age of the universe. For a nonrelativistic
charged-particle beam it is ∼ 1− 10 µs, i.e., “1–10 km,” typically much longer than, e.g., the length
of a linac. Yet, elliptical galaxies appear to be “relaxed” to a smooth density distribution, and
charged-particle beams have likewise been seen to “relax” to a smooth density distribution, and
also to equipartition in a few meters, depending on details of the space charge. How so? This paper
focuses on the behavior of the orbits comprising the system and how these orbits mix through their
accessible phase space. Time scales for relaxation to quasi-equilibria are estimated; the estimates
are in reasonable agreement with the true values computed in numerical simulations and seen in
(the few) beam experiments done to date.

1. Introduction

Rapid irreversible dynamics is a practical concern in producing high-brightness charged-particle
beams. Time scales of irreversible processes place constraints on methods for compensating
against degradation of beam quality caused by, for example, space charge or coherent synchrotron
radiation. Compensation must be fast compared to active irreversible processes, and this affects
the choice and configuration of the associated hardware.

A beam bunch with space charge comprises an N-body system with typically 3N degrees of
freedom. Orbits in the nonlinear space-charge force may be chaotic, especially in a nonequilib-
rium beam. Through phase mixing, an initially localized ensemble of chaotic orbits will grow
exponentially and eventually diffuse through its accessible phase space, reaching an invariant
distribution. This is what is meant by “chaotic mixing” [1]. The process is irreversible in the
sense that infinitesimal fine-tuning is needed to reassemble the initial conditions. It is also dis-
tinctly different from phase mixing of regular orbits, a process that winds an initially localized
ensemble into a filament over a comparatively narrow region of phase space, and that is in prin-
ciple reversible. Whereas chaotic mixing proceeds exponentially over a well-defined time scale
and causes global, macroscopic changes in the system, phase mixing carries an algebraic time
dependence, proceeds on a time scale depending on the distribution of orbital frequencies across
the ensemble, and acts only over a portion of the phase space.

Chaotic mixing may or may not be rapid. For example, simulations of large self-gravitating
N-body systems in which the smoothed density is constant over a stationary ellipsoidal volume
show that the orbits, though they are chaotic, behave for very long times as if they were regular [2].
These simulations, however, also reveal that adding a density cusp and/or inserting a massive
black hole at the centroid can greatly accelerate chaotic mixing, driving it to completion within
a few orbital periods. The process tends to make the distribution of stars more isotropic [3],
reminiscent of equipartitioning in beams. In short, structure in the density distribution of a self-
gravitating system can lead to rapid chaotic mixing by increasing the degree of chaoticity of the
orbits.
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By analogy, one might conjecture that structure in the density distribution of a self-interacting
beam can likewise lead to rapid chaotic mixing. One example is the University of Maryland five-
beamlet experiment that showed presumably irreversible dissipation of the beamlets after a few
space-charge-depressed betatron periods [4]. Simulations of the experiments revealed a substan-
tial fraction of globally chaotic orbits [5], and chaotic mixing thereby presents itself as a possible
mechanism. In any case, ascertaining conditions that lead to rapid chaotic mixing in beams is an
undertaking of practical importance.

2. Theory vs. Numerical Experiments

The past few years have seen development of a geometric method proposed by M. Pettini to
quantify chaotic instability in Hamiltonian systems with many degrees of freedom. The central
idea is to describe the dynamics in terms of average curvature properties of the manifold in
which the particle orbits are geodesics. The method hinges on the following assumptions and
approximations, which are discussed thoroughly in [6]: (1) a generic geodesic is chaotic; (2) the
manifold’s effective curvature is locally deformed but otherwise constant; (3) the effective curva-
ture reflects a gaussian stochastic process; and (4) long-time-averaged properties of the curvature
are calculable as phase–space averages over an invariant measure, specifically, the microcanonical
ensemble. The gaussian process is the zeroth-order term in a cumulant expansion of the actual
stochastic process; assumption (3) is that the zeroth-order term suffices. The end result relates
chaotic instability to the geometric properties of the manifold defined by the long-time-averaged
orbits. Though the assumptions and approximations lack universal validity and are difficult to
prove rigorously for a given system, they nonetheless would seem to offer a reasonable basis for
identifying conditions that can produce rapid chaotic mixing [7].

With the assumptions and approximations, Pettini and others [6] derive an expression for the
largest Lyapunov exponent χ (which is a measure of the mixing rate [7]) in terms of the curva-
ture and its standard deviation averaged over the microcanonical ensemble. The idea is that, as
t → ∞, chaotic orbits of total energy E mix through the configuration space toward an invariant
measure, taken per assumption (4) to be the microcanonical ensemble δ(H −E), over which time
averages become equivalent to phase-space averages. Specifically, for an arbitrary function A(q),
the averaging process is

〈A〉 ≡ lim
t→∞

〈A〉t =
∫
dq
∫
dq̇A(q)δ[H(q, q̇)− E]∫

dq
∫
dq̇δ[H(q, q̇)− E] . (1)

Pettini et. al.’s method yields

χ(ρ) = 1√
3
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L(ρ)

√
κ L(ρ) =

[
T(ρ)+

√
1+ T 2(ρ)

]1/3
, T (ρ) = 3π

√
3

8
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2
√

1+ ρ +πρ , (2)

in which ρ ≡ σ/κ, a quantity that measures the ratio of the average curvature radius to the length
scale of fluctuations, with

κ = 〈∆V〉
3N − 1

, σ =
√
〈(∆V)2 − 〈∆V〉2〉

3N − 1
, (3)

in which ∆ denotes the Laplacian ∂i∂i.
The geometric quantities derive from the 6N-dimensional microcanonical ensemble. Anticipat-

ing that granularity takes a long time to affect mixing, and wishing to identify conditions for rapid
mixing, we now consider the influence of the 3-dimensional coarse-grained space-charge poten-
tial Vs on a generic chaotic orbit. We presume the assumptions and approximations carry over to
the coarse-grained system; when they do not, chaotic mixing will normally be too slow to be of
concern. We take the external focusing potential Vf to be quadratic in the coordinates x comoving
with the bunch, i.e., Vf (x) = (ω2

xx2+ω2
yy2+ω2

zz2)/2; the total potential is V = Vf+Vs . Per Equa-

tion (3) and Poisson’s equation the quantities κ and σ are determined from ∇2V =ω2
f −ω2

p(x),
in which ω2

f = ω2
x +ω2

y +ω2
z, ω2

p(x) = n(x)e2/(εom), n(x) is the (smoothed) particle den-
sity, e and m are the single-particle charge and mass, respectively, and εo is the permittivity
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of free space. With ωp0 ≡ ωp(0), the results may be expressed conveniently in terms of the
space-charge-depressed focusing strength ω2

s = ω2
f −ω2

p0 and the normalized particle density

ν(x) = n(x)/n(0) as κ = (ω2
p0/2)

[
(ωs/ωp0)2 + 1− 〈ν〉

]
, σ = ω2

p0

√
(〈ν2〉 − 〈ν〉2)/2. Inserting

these results into Equation (2) gives the associated time scale, tm ≡ 1/χ, for irreversible chaotic
mixing. When the standard deviation of the density distribution is large, as can be the case when
substructure is present, ρ will be appreciable, and in turn Equation (2) makes clear that tm will
be a few space-charge-depressed betatron periods. This is consistent with, e.g., the aforemen-
tioned University of Maryland experiment showing irreversible dissolution of both matched and
mismatched 5-beamlet configurations over a few depressed betatron periods [4].

The aforementioned studies of galactic dynamics permit a more precise means of assessing the
theory. Comprehensive simulations of chaotic mixing in galaxies consisting of a homogeneous
ellipsoid with a massive black hole at its centroid have recently been done [8]. Comparison of
these results against those of the theory reveal that the analytic results agree closely with the
numerical results, particularly for intermediate–to–small values of the black-hole mass [7]. The
agreement suggests that the 6-dimensional phase space governed by the potential exhibits global
chaos and associated rapid irreversible mixing over the bulk of the parameter space. Uncertainty
in the calculated time scale seems to be principally associated with uncertainty in the autocorre-
lation time; it is comparatively insensitive to the choice of the invariant measure that weights the
statistical averages.

Preliminary results from a numerical study in progress indicate that chaotic mixing is associated
with the equipartitioning of anisotropic charged-particle beams [9]. The study is based on the
same methodology as that of the galactic studies, viz., following the evolution of initially localized
ensembles, looking for exponential divergence of orbits in the phase space, and deciphering
the time scale for the divergence. The results suggest that anisotropy establishes a significant
population of chaotic orbits, these orbits diverge exponentially, and the divergence saturates on
a global scale as the orbits fill their accessible phase space.

3. Synopsis

To summarize, investigations to date point to the presence of chaotic orbits in nonequilibrium
systems comprising a large number of mutually interacting particles. The chaotic behavior arises
generically from a parametric instability that can be modeled by a stochastic-oscillator equation.
Calculated time scales are normally reasonably close to those seen in numerical experiments and
are consistent with (the few) existing laboratory experiments concerning charged-particle beams.
However, the theoretical treatment provides no information as to what criteria are necessary and
sufficient to establish a preponderance of globally chaotic orbits; it merely hypothesizes their
existence. Likewise, it fails to account for “sticky” chaotic-orbit segments that, when present,
tend to slow the mixing. Real systems may, however, mitigate this caveat. For example, external
noise is known to add greatly to the efficiency of chaotic mixing by overcoming stickiness. Local-
ized irregularities that have been coarse-grained away may likewise increase the chaoticity of the
orbits. The lower limit corresponds to graininess manifesting itself in binary particle interactions
that, in both regular and chaotic smoothed potentials, appears to constitute a source of noise.
Graininess establishes diffusion of an orbit from the trajectory it would have in the smooth po-
tential. The diffusion proceeds as a power law in time for regular orbits, but exponentially for
chaotic orbits [10].

When chaotic mixing is active, structure in the density distribution determines how rapidly it
progresses. Production of high-brightness beams may lead to transient, localized density peaks,
as has been seen, e.g., during bunch compression and in merging multiple beamlets. Thus, an
accelerator designer who cannot know a priori the detailed bunch structure will want to ensure
that emittance compensation is completed within roughly a plasma period to be confident that
irreversible mixing will not spoil the compensation. This criterion translates into permissible
beamline locations and maximum lengths that the associated hardware can occupy [11].

An interesting possibility is to design laboratory experiments involving beams with an eye
toward applications to other areas, such as galaxies for which direct experimentation is obviously
impossible, or large N-body systems of interacting particles in general. We are in the process of
designing such experiments to be conducted with the University of Maryland Electron Ring.
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